

2022 Generation Planning Process

Rate Advisory Committee Meeting – July 21, 2022

Agenda

Introduction to CRA

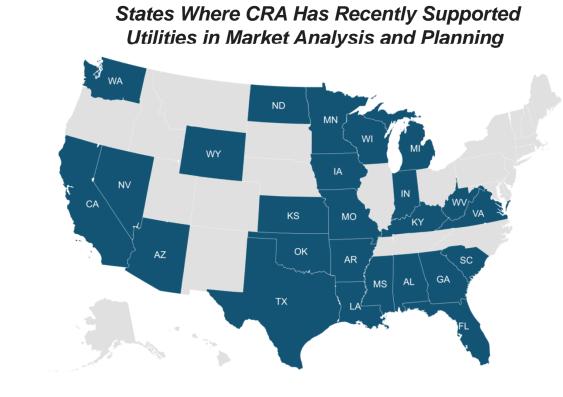
Executive Summary

Determining Planning Objectives for Scorecard

Developing ERCOT Market Perspectives

Baseline Market Inputs

Portfolio & Scenario Analysis

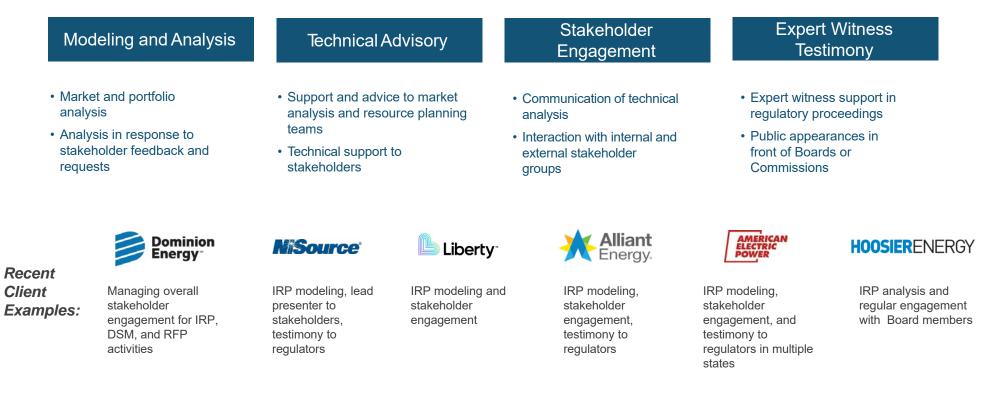


Introduction to CRA

3

CRA Experience with Electric Utility Planning

Since 2018, CRA has supported investor-owned utilities and publicly owned utilities in 25 states with market analysis, generation strategy and resource planning questions.



CRA^{Charles} River Associates

4

CRA Has Experience with All Aspects of Electric Utility Planning

Our work is frequently used as part of regulatory proceedings and stakeholder engagement processes

CRA^{Charles} River Associates

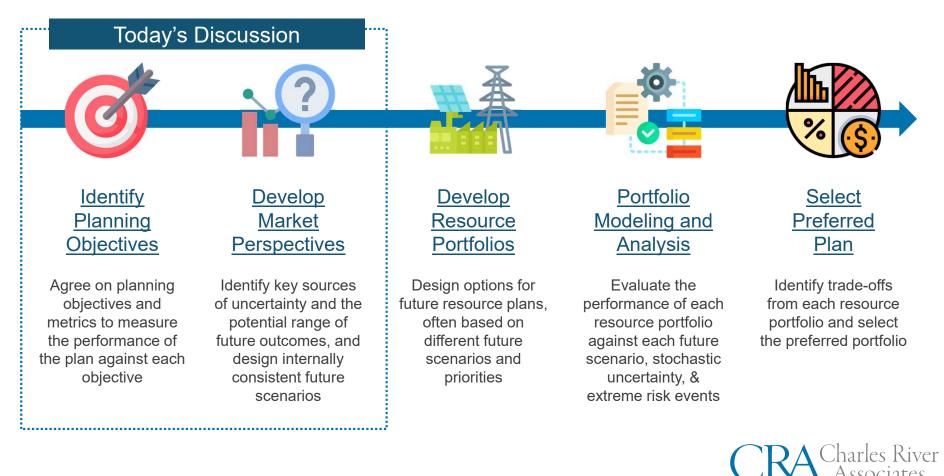
Agenda

Introduction to CRA

Executive Summary

Determining Planning Objectives for Scorecard

Developing ERCOT Market Perspectives


Baseline Market Inputs

Portfolio & Scenario Analysis

CRA Integrated Resource Planning (IRP) Approach

Our five-step IRP approach has been implemented in dozens of IRPs across the US in recent years



Executive Summary

7

Determining Planning Objectives

Agreeing on key planning objectives early in the planning process will 1) give clarity and direction for the development of the preferred plan, 2) drive structured trade-off discussions, and 3) help validate and rationalize decisions

Executive Summary

Developing Market Perspectives

CRA and CPS Energy are evaluating major themes in the energy market that could inform scenario design and contribute to stochastic risk assessment.

Theme	Narrative	******	M Commodity
Reference Scenari	 Continuation of historical trends in demand growth, technological developments 	Kan an a	Commodity N Prices
Carbon-Based Economy (CBE)	 Reduced environmental regulations and no federal or state-level carbon limits 	Key sources of uncertainty to incorporate into analysis.	Carbon Policies
Net Zero Carbon Economy (NZE)	 Federal or state-level economy-wide net zero carbon targets by 2045 		Costs
Volatile Market (VMA)	 Geopolitical concerns drive policy decision-making 		Growth

CRA^{Charles} River Associates

8

Executive Summary

Initial Options for CPS Energy Portfolio

Three initial options being considered include portfolios where selected new generation capacity are either all-renewable, all-natural gas or an "optimal" blend of natural gas and renewables

Portfolio	Allowed Generation Technologies for New Capacity
Renewable	Wind, solar, & otherStorage
Natural Gas	Combined cycle (CC)Reciprocating internal combustion engine (RICE)
Blended	 Economic maximum renewables: Wind, solar, & other Economic storage Natural Gas: Combined cycle & Reciprocating internal combustion engine
TBD	Pending community input
Notes:	

Portfolios may be assessed with and without "Sustainable Tomorrow Energy Plan" in Baseline scenario. 1.

2. Emerging technology assumptions to be included.

Capacity is needed to address customer growth and unit retirements (Sommers 1 & 2, Spruce 1).

9

Agenda

Introduction to CRA

Executive Summary

Determining Planning Objectives for Scorecard

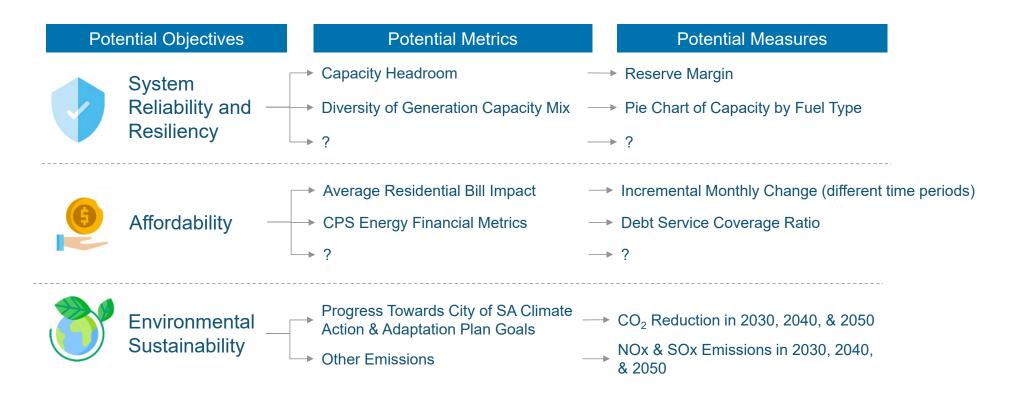
Developing ERCOT Market Perspectives

Baseline Market Inputs

Portfolio & Scenario Analysis

Planning Objectives for Scorecard

Determining Planning Objectives


Agreeing on key planning objectives early in the planning process will 1) give clarity and direction for the development of the preferred plan, 2) drive structured trade-off discussions, and 3) help validate and rationalize decisions

Turning Objectives into Decision Making Tool

Metrics can be identified for each objective to measure the performance of the resource plan against the objective

Using Scorecard to Aid Decision Making

A scorecard is a information reporting tool that displays the performance of each portfolio against each objective and metric to visualize trade-offs across different portfolio options

	Example Scorecard – For Illustrative Purpose Only						
	Planning Objectives						
	System Reliabili	y and Resiliency	Affordability		Environmental Sustainability		
	Reserve Margin	Capacity Diversity	Incremental Monthly Residential Bill Change	CPS Energy Financial Metrics	CO₂ Reduction in 2030, 2040, and 2050	NOx & SOx Emissions in 2030, 2040, & 2050	
Portfolio 1				Υ			
Portfolio 2			Mea	asures			
Portfolio 3							
Portfolio 4							
Portfolio 5							

Planning Objectives for Scorecard

Scorecard Discussion

- Have we considered an exhaustive list of planning objectives?
- What metrics and measures would the RAC find helpful?

Agenda

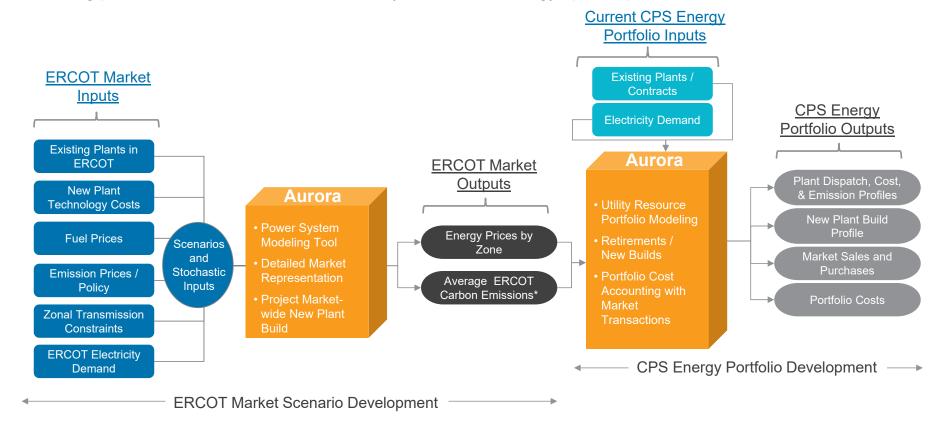
Introduction to CRA

Executive Summary

Determining Planning Objectives for Scorecard

Developing ERCOT Market Perspectives

Baseline Market Inputs


Portfolio & Scenario Analysis

ERCOT Market Scenarios – Baseline Market Inputs

Overall Modeling Process

The modeling process includes ERCOT market analysis and CPS Energy-specific portfolio evaluation

Note: *This is used to measure carbon emissions from electricity purchases by CPS Energy

Key Inputs

We rely on a combination of ERCOT documents, CPS Energy forecasts and CRA analysis of third-party forecasts to develop baseline market inputs for ERCOT

Input	Description	Source for Baseline Assumption
ERCOT Demand Growth	Level of electricity demand which could be affected by level of economic growth, distributed generation, and energy efficiency	ERCOT outlook, supplemented by CRA extrapolation
ERCOT Market Rules	Future changes to the rules governing the ERCOT electricity market that could influence market prices	Current ERCOT rulebook
Delivered Fuel Prices	Prices of natural gas and coal delivered to power plants	CPS Energy Forecast
Carbon Regulation	Future policies governing carbon emissions, which could be in a form of a traded carbon price, carbon tax, or other environmental regulations	CPS Energy Forecast
New Plant Generation Costs	Capital costs of new generation plant, which could be affected by technological innovations and supply chain constraints	CRA analysis of EIA and NREL projections

Agenda

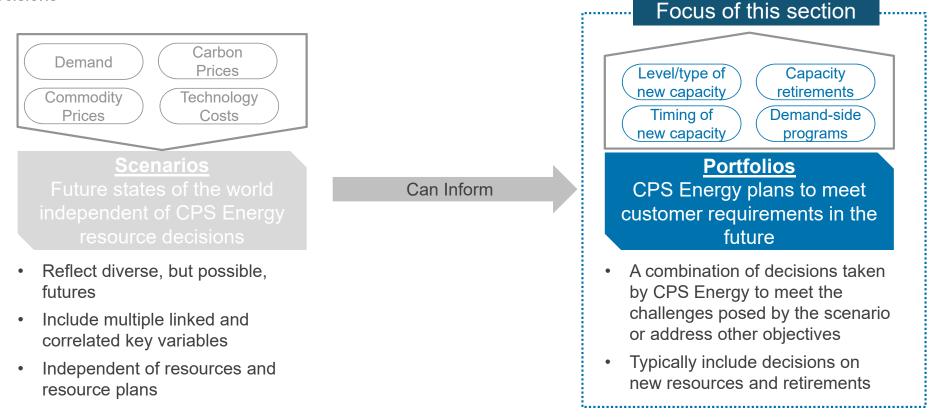
Introduction to CRA

Executive Summary

Determining Planning Objectives for Scorecard

Developing ERCOT Market Perspectives

Baseline Market Inputs


Portfolio & Scenario Analysis

ERCOT Market Scenarios - Portfolio & Scenario Analysis

Scenarios vs. CPS Energy Portfolios

Scenarios and portfolios are two distinct concepts. Scenarios are **external** factors, while **portfolios** are CPS Energy decisions

19

Initial Options for CPS Energy Portfolio

Three initial options being considered include portfolios where selected new generation capacity are either all-renewable, all-natural gas or an "optimal" blend of natural gas and renewables

Portfolio	Allowed Generation Technologies for New Capacity
Renewable	Wind, solar, & otherStorage
Natural Gas	Combined cycle (CC)Reciprocating internal combustion engine (RICE)
Blended	 Economic maximum renewables: Wind, solar, & other Economic storage Natural Gas: Combined cycle & Reciprocating internal combustion engine
TBD	Pending community input

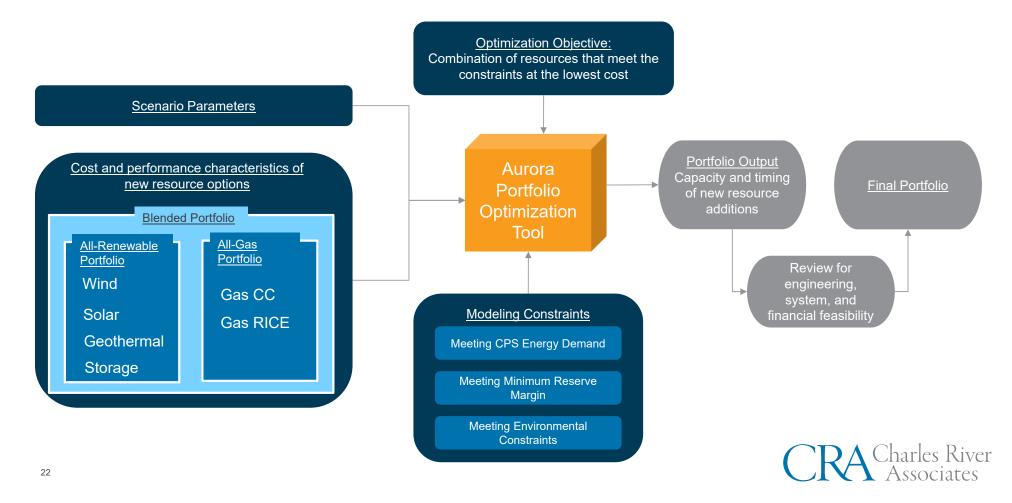
Notes:

- 1. Portfolios may be assessed with and without "Sustainable Tomorrow Energy Plan" in Baseline scenario.
- 2. Emerging technology assumptions to be included.

Capacity is needed to address customer growth and unit retirements (Sommers 1 & 2, Spruce 1).

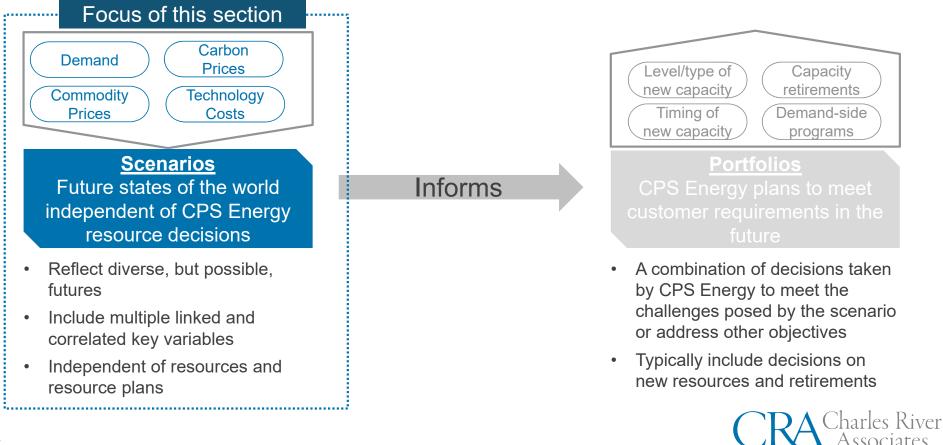
Modeling Request

Public Citizen requested the following portfolios be modeled.


Portfolio	Proposed Changes to Capacity Mix
Retire Coal	 Retire Spruce 1 by 2025 and Spruce 2 by 2028. Replace with the most favorable mix of wind, solar and batteries.
Retire Coal with Spruce 2 Gas Conversion as a Bridge	 Retire Spruce 1 by 2025 or 2028. Convert Spruce 2 to gas by 2025 or 2028 and run till 2035. Replace Spruce 2 with the most favorable mix of wind, solar and batteries.
Retire All Fossil Fuel	 Retire Spruce 1 by 2025 and Spruce 2 by 2028. Retire Braunig 1, 2 and 3 by 2024. Retire Sommers 1 by 2026 and Sommers 2 by 2028. Retire Arthur Von Rosenberg and Rio Nogales by 2030. Retire all Milton B Lee units by 2035 or 2040 Replace with the most favorable mix of wind, solar and batteries.

Note: Also see RAC gen plan input from the Feb 2022 meeting in the Appendix.

Approach to Selecting New Resources for Portfolios


Aurora is used as a tool to facilitate the selection of new resources for each portfolio

ERCOT Market Scenarios - Portfolio & Scenario Analysis

Scenarios vs. CPS Energy Portfolios

Scenarios and portfolios are two distinct concepts. Scenarios are **<u>external</u>** factors, while **<u>portfolios</u>** are CPS Energy decisions

Developing Market Perspectives

CRA and CPS Energy are evaluating major themes in the energy market that could inform scenario design and contribute to stochastic risk assessment.

	Theme	Narrative		~	*****
	Reference Scenario (REF)	 Continuation of historical trends in demand growth, technological developments 			Commodity Prices
	Carbon-Based Economy (CBE)	 Reduced environmental regulations and no federal or state-level carbon limits 	Key sources of uncertainty to incorporate into analysis.	CO2	Carbon Policies
CARBON NEUTRAL	Net Zero Carbon Economy (NZE)	 Federal or state-level economy-wide net zero carbon targets by 2045 			Technology Costs Demand
	Volatile Market (VMA)	Geopolitical concerns drive policy decision-making			Growth Market Design
24			CI	R Cha	arles River ssociates

Scenario Design Considerations

CRA and CPS Energy are evaluating major themes in the energy market that could inform scenario design. The table below provides a *preliminary* view of *potential* scenario design. These are not final scenarios to be modeled.

Theme		Commodity Prices	Co2 Carbon Policies	Technology Costs	Demand	ERCOT Market Design Change
	Reference Scenario (REF)	Baseline	Baseline	Consensus	Baseline	Confirmed changes only
	oon-Based Economy (CBE)	Low	No Price	Consensus	High driven by low prices	Confirmed changes only
CARBON NEUTRAL	Net Zero Carbon Economy (NZE)	Low due to electrification drive	High carbon price	Fast decline with ITC/PTC	High driven by electrification	Capacity market launched & seasonal reserve margins
	Volatile Market (VMA)	High	No price to alleviate inflation pressure	Slow decline due to trade restrictions	Low due to high energy prices	Confirmed changes only
25					CF	A Charles River Associates

Discussion and Next Steps

- Continue collaboration with the RAC & other stakeholders
- Finalize scorecard
- Further develop scenario designs & portfolio concepts

Appendix – Baseline Market Inputs

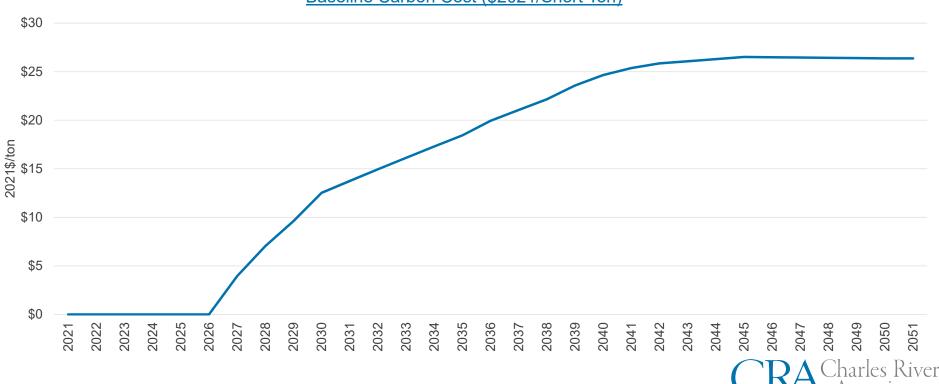
Baseline Demand Growth

Gross demand, including EV charging impact, is expected to grow by 2.0%/year. The projected growth in distributed generation (DG) reduces gross demand growth. Demand net of DG (Net Demand) is expected to grow by 1.3%/year.

Baseline ERCOT Demand Forecast (TWh)

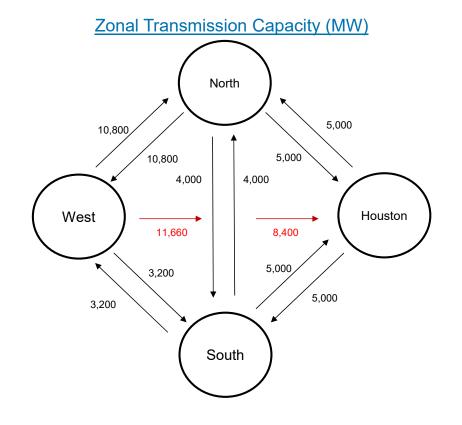
Appendix – Baseline Market Inputs

ERCOT Market Rules


The PUCT approved a blueprint for the design of the wholesale electric market in ERCOT in December 2021, which aims to reform the ERCOT wholesale market in two phases. The following table summarizes the proposed enhancements

Phase I Enhancements	Description	Expected Impact on Prices	Included in Baseline
Operating Reserve Demand Curve	Modify ORDC by reducing the Minimum Contingency Level (MCL) to 3,000 MW and set the high system-wide offer cap and value of lost load to \$5,000/MWh	 Reduce extreme price spikes Provide additional support for dispatchable resources 	Yes, as the change is confirmed
Demand Response (DR)			
Emergency Response Service			
Fast Frequency Response Service			No, as the detailed
Loads in Non-Spinning Reserve Service		Contribute to reducing extreme	design of the
Firm Fuel Product		price spikes	changes are not yet finalized
Voltage Support Compensation			
Contingency Reserve Service			

Carbon Emission Regulation


Carbon policies could take the form of a carbon price, carbon tax or other environmental regulations that impact generation costs. Carbon pressure, whichever form it might take, is generally modeled as an additional generation cost on a \$/short ton basis. CPS Energy staff develops the Baseline carbon cost assumptions

Baseline Carbon Cost (\$2021/Short Ton)

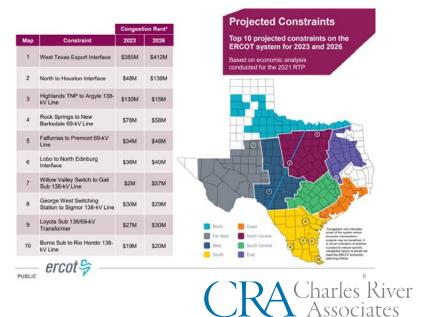
30

Additional Consideration – Transmission Constraints

- CRA's market analysis is performed on a zonal level, meaning that price formation is analyzed for regions with persistent, significant transmission congestion, as opposed to at every node across the system.
- Actual realized prices will differ at the nodal level within these zones, and changes in local transmission topology and local supply and demand dynamics could significantly alter nodal pricing dynamics over time. However, the zonal approach evaluates the expected long-term trends at the major pricing hubs over a 25-year period.
- The current transfer capabilities across the four ERCOT zones are shown to the left (in MW). Due to rapid change in the resource mix, individual transmission constraints have emerged in different parts of the system, including West Texas and South Texas.

Appendix – Baseline Market Inputs

How is Congestion Reflected?


- ERCOT is undertaking a number of specific transmission projects, with near-term (within next six years) efforts primarily designed to address issues within the Far West and South.
- While these near-term projects focus more on nodal level constraints, ERCOT also analyzes future transmission system needs using a range of future demand and supply scenarios. Current findings identify the need to expand transmission between the West and the load centers to facilitate high penetration of wind and solar capacity.
- For the ERCOT market analysis, CRA is evaluating adoption of some of the high priority improvement options to facilitate more accurate zonal resource allocation, including:
 - West Texas Export Interface
 - North to Houston Interface

Source: ERCOT Long-term West Texas Study Report, 2021 Report on Existing and Potential Electric System Constraints and Needs

Improvement		ate Voltage imit ¹⁴ (GW)	Estimated New Double-		ion-Cost js (\$M)	TSP Cost Estimate (\$M) ¹⁶
Option	2023	2030	Circuit Miles ¹⁵	2023	2030	
Base Case	12.24	13.75	-	-	-	-
Option 1 (4AC)	16.46	18.35	1,009	135	642	2,738
Option 2 (3AC+HVDC)	16.49	18.78	1,274	170	783	5,203
Option 3 (5AC)	17.45	19.16	1,248	150	742	3,459

Improvement options identified in 2022 Long-Term West Texas Export Study

Top 10 Projected Constraints on the ERCOT System for 2023 and 2026

Appendix – Draft Baseline Outputs

Hourly Price Shape Trends over Time

Summer Average Price Ratio (Peak Price Hour = 1) 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 1 2 3 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 4 5 6 7 8 -2022 -2030 -2040 -2045

- Ratio of Hourly Price to Peak Price over a 24-Hr Period
- Significant renewable penetration in ERCOT is likely to shift peak price hours from hours 16-18 towards hours 19-22 over time
- Peak price hours are also expected to be more sustained through the evening and overnight periods
- The introduction of storage resources of longer duration could further flatten loads and prices

Appendix – ERCOT Market Scenarios – Portfolio & Scenario Analysis

RAC Gen Plan Input

Feb 2022 RAC meeting (page 1 of 2)

<u>Generation Resources:</u>

- What are the energy sources being used right now
- Combined cycle plants: cost
- Nuclear
- Cost of shutting down/replacing older plants
- Spruce -> natural gas
- Purchase of 200 MW of solar energy
- Renewables: current & future methods, cost estimates
- "New tech: how much \$ paid for by ___?" as screening tool
- Solar: farms or rooftop?
- Rooftop solar & battery

Energy Efficiency:

- Energy efficiency & demand response
- Effect of removing STEP on energy demand (over past 4 years)
- Include STEP into demand grid/model

Appendix – ERCOT Market Scenarios – Portfolio & Scenario Analysis

RAC Gen Plan Input

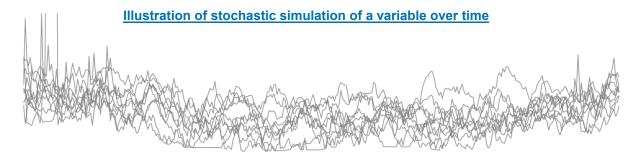
Feb 2022 RAC meeting (page 2 of 2)

<u>Modeling:</u>

- Clarity around emissions projections
- Discussion around assumptions of modeling
- Models for all clean energy sources
- Rate of return for each scenario
- Include contracted renewables/how will renewables be modeled?
- Absence of Braunig plants

- Maximize clean energy & reserve energy
- View examples from other areas
- What simulations are we using
- Model of probability of different generation & price outcome
- Capture future weather in model
- Safe # for renewables? Dispatchable vs nondispatchable recommended breakdown

Scenario vs Stochastic


Because generation decisions are generally capital intensive and long-lived, understanding and incorporating future risk and uncertainty is critical to making sound decisions. Generation analysis can use both scenarios and stochastic analysis to perform a robust assessment of risk

A <u>scenario</u> is a single integrated set of assumptions

- Can be used to answer the "What if..." questions.
- For example, major themes such as regulatory changes and technological shifts can change fundamental outlook for all key drivers.
- Using scenarios to explore what if these major themes materialize, and can tie portfolio performance directly to a "storyline"

<u>Stochastic</u> analysis is based on development of random distributions of input assumptions

- · Can be used to evaluate volatility and "tail-risk" impacts
- For example, stochastic can be applied on commodity prices to evaluate the portfolio performance under a broad range of future commodity price outcomes
- The interactions between market price volatility and commodity price volatility are more complex than what can be assessed under "expected" conditions

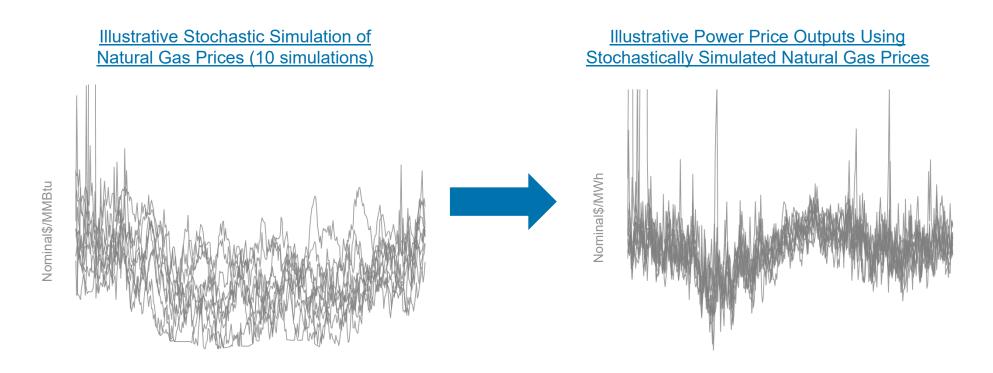
CRA^{Charles} River Associates

Narratives for Scenario Design

CRA and CPS Energy are evaluating major themes in the energy market that could inform scenario design. The table below provides a *preliminary* view of *potential* scenario design. These are not final scenarios to be modeled.

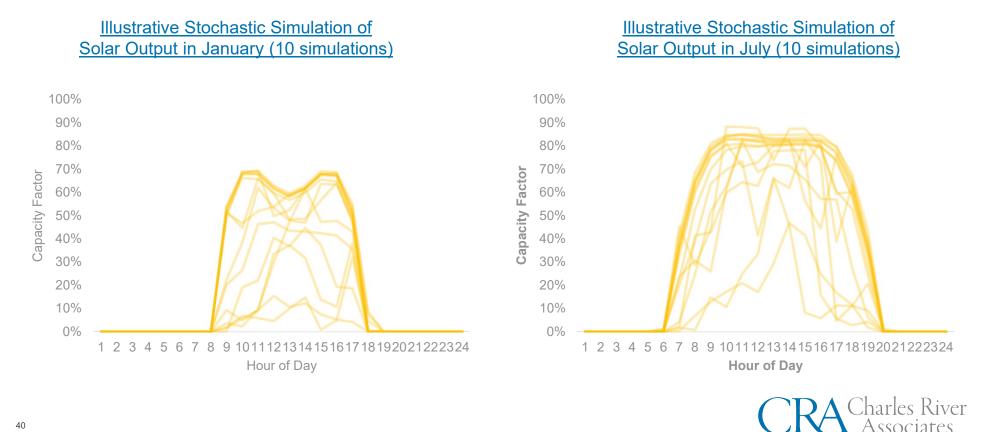
	Theme	Narrative
	Reference Scenario (REF)	 Continuation of historical trends in demand growth, technological developments Current consensus view on future commodity and carbon prices ERCOT market design change as approved and finalized
A	Carbon-Based Economy (CBE)	 Reduced environmental regulations and no federal or state-level carbon limits Policies supportive of domestic gas production, leading to relatively low gas prices High demand growth due to on-shoring of industry from other jurisdictions
CARBON NEUTRAL	Net Zero Carbon Economy (NZE)	 Federal or state-level economy-wide net zero carbon targets by 2045 Large-scale electrification of buildings and transport results in high demand growth Incentives for renewable electricity generation, reducing cost of technologies Implementation of carbon cap-and-trade programs, with relatively high carbon prices
2 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Volatile Market (VMA)	 Geopolitical concerns drive policy decision-making High commodity prices due to restrictions on energy trades Slow declines in renewable technology costs due to trade restrictions

Sources of Uncertainty for Scenario Analysis


CRA and CPS Energy are evaluating key sources of uncertainty to incorporate into scenario analysis. Examples of uncertainties being evaluated are discussed below

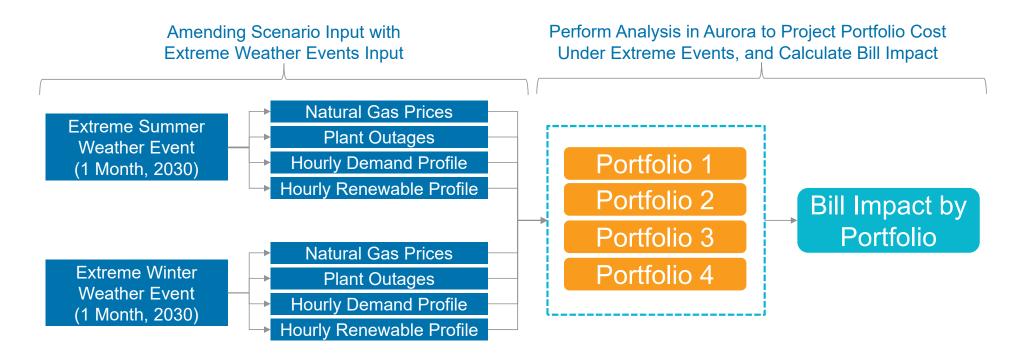
	Commodity Prices	Natural gas prices exhibit significant volatility with Henry Hub natural gas prices ranged from \$1.75/MMBtu in May 2020 to \$8.14/MMBtu in May 2022. Future evolution of gas prices will depend on geopolitical development, domestic regulations, new resource finds, and the pace of energy transition
CO ₂	Carbon Policies	Recent state-led initiatives have seen carbon prices ranging from \$14/ton in Eastern US States to \$31/ton in California. Future evolution of carbon policies will depend on political consensus, policy mechanism and carbon emission targets
	Technology Costs	Following decades of declines in the cost of renewable generation costs, supply-chain and geopolitical issues are threatening to reverse the declines. Future evolution of technology costs will depend on the resolution of supply-chain issues, investment in R&D and US trade policies (on-shoring vs free trade)
	Demand Growth	Continued improvements in appliance efficiency, increases in adoption of electric vehicles, and growth in distributed generation could fundamentally change demand growth outlook going forward
	Market Design	The PUCT approved a blueprint for the updated design of the wholesale electric market in ERCOT in December 2021. Some proposed changes, once confirmed, could fundamentally alter the economic decisions for new generation investment within ERCOT, affecting the price outlook

Commodity Price Stochastic Analysis


Stochastic price iterations can test a wider range of commodity price conditions than are considered in the deterministic scenarios, explicitly testing high-impact short-duration events that expose customers to costs.

CRA^{Charles} River Associates

Renewable Output Stochastic Analysis


Renewable outputs are intermittent with random variations based on weather conditions. Using stochastic analysis to produce a wider sample of renewable production profiles can allow each portfolio to be tested against periods of low output that coincide with high market prices (or vice versa).

Appendix - Scenario & Stochastic

Extreme Weather Events

CRA and CPS Energy are evaluating approaches to test the robustness of the resource portfolios against extreme weather. We are currently considering a single year test using inputs based on previous summer and winter weather events in Texas to project impact of the portfolios under extreme weather conditions

CRA^{Charles} River Associates