

2022 Power Generation Plan Initial Reference Case Results Discussion

Rate Advisory Committee Meeting – October 20, 2022

Today's Focus

- Review preliminary portfolio results for the Reference Scenario
- Our objective is to understand the data compare multiple portfolios
- No decisions will be made today
- Not advocating for any portfolio until all information is gathered
- More information will be coming:
 - Reference Scenario bill impact & revenue requirements will be sent Nov 1st
 - Portfolio results for all scenarios & sensitivities sent by the Nov 17th RAC meeting

Agenda

Recap of September 15 RAC Meeting

Recap of Progress

Revised Planning Objectives and Metrics

Review of CPS Energy Resource Portfolio Definitions

Review of Portfolio Performance under Planning Objectives and Metrics

Timeline and Next Steps

Responses to RAC Member Comments and Questions

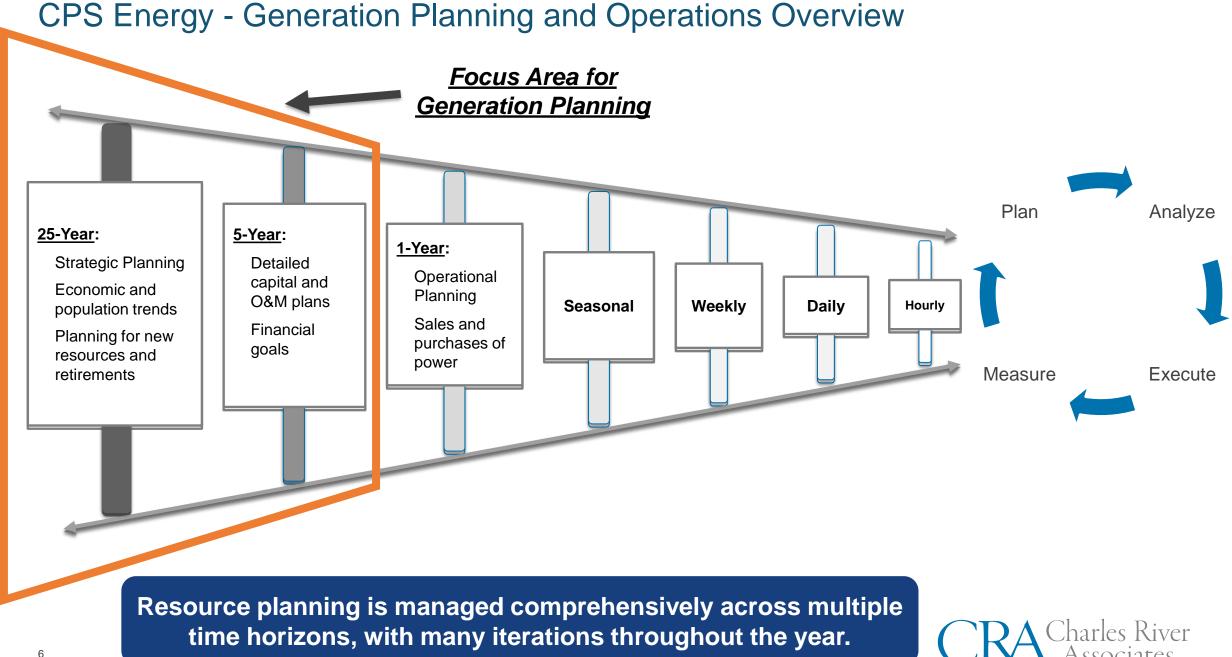
- During the September RAC meeting, members offered questions and comments related to five major topic areas:
 - 1. Process
 - 2. Objectives and Metrics
 - 3. Scenario Parameters
 - 4. Resource Options
 - 5. Data and Output Reporting
- A summary of detailed responses has been provided separately to RAC members. Some comments have been incorporated into today's presentation and will be accounted for as results are produced.

Agenda

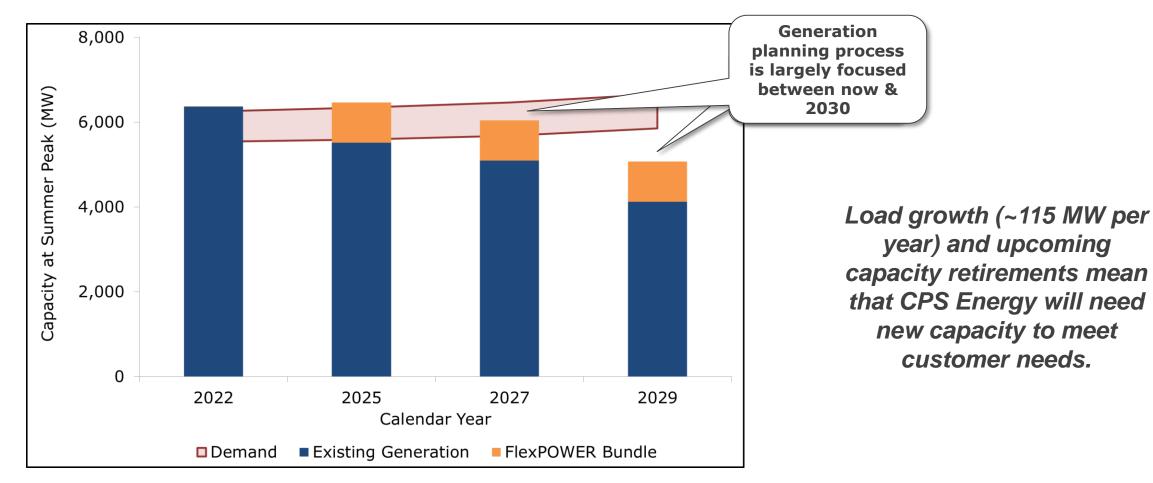
Recap of September 15 RAC Meeting

Recap of Progress

Revised Planning Objectives and Metrics


Review of CPS Energy Resource Portfolio Definitions

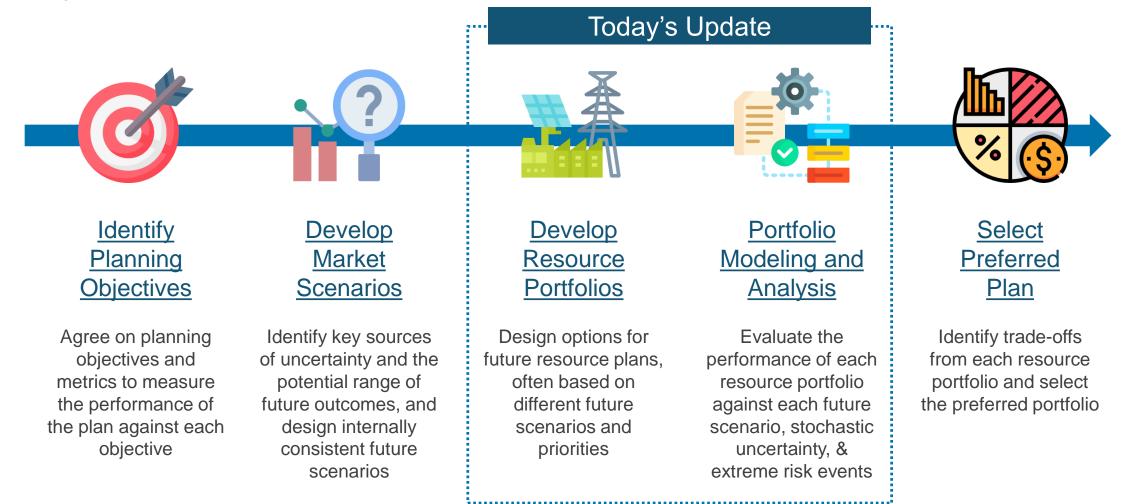
Review of Portfolio Performance under Planning Objectives and Metrics


Timeline and Next Steps

Overall Process Context

Generation Planning is Focused on Meeting Needs Between Now & 2030

Note:


7

The graphic illustratively displays CPS Energy's expected supply-demand balance assuming the retirement schedules in Portfolios 1-3 and the addition of the FlexPOWER Bundle capacity. Different portfolio concepts in the generation planning process will evaluate different retirement timings, resulting in slightly different supply gaps over time.

CRA^{Charles} River

CRA Power Generation Resource Planning Approach

Since the September meeting, the focus has been on refining resource portfolio options and performing Reference Case modeling and analysis

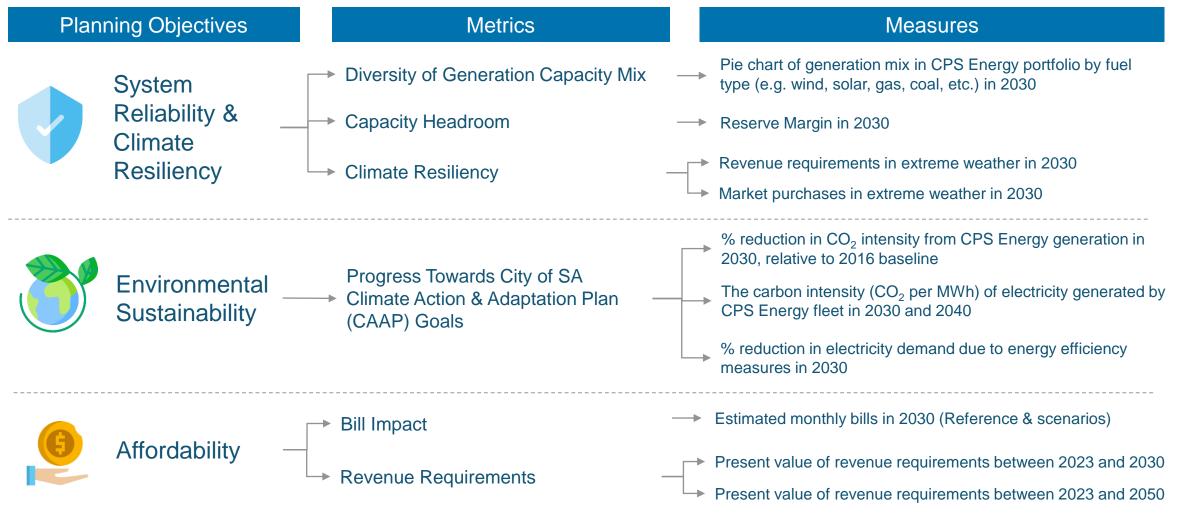
CRACharles River Associates

Recap of September 15 RAC Meeting

Recap of Progress

Revised Planning Objectives and Metrics

Review of CPS Energy Resource Portfolio Definitions


Review of Portfolio Performance under Planning Objectives and Metrics

Timeline and Next Steps

Objectives and Metrics

Objectives and metrics have been further refined based on RAC feedback

Objectives and Metrics

Objectives and metrics have been further refined based on RAC feedback

Objectives	Metrics	Measures
System Flexibility	Market Purchases	% of CPS Energy electricity demand that is met through ERCOT market purchases in 2030
Flexibility	Dispatchability	% of generating capacity in CPS Energy fleet that can have its output adjusted on demand in 2030
Workforce	CPS Energy Workforce Impact	Estimated Number of CPS Energy Generation Employees in 203
Impact	Local Economic Impact	 Total \$ in capital expenditures for new generation capacity built in greater San Antonio area

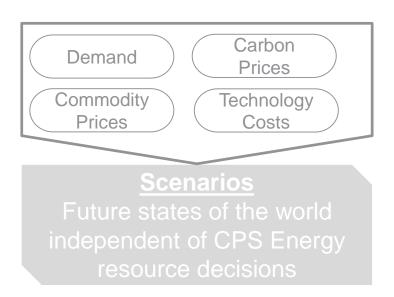
Agenda

Recap of September 15 RAC Meeting

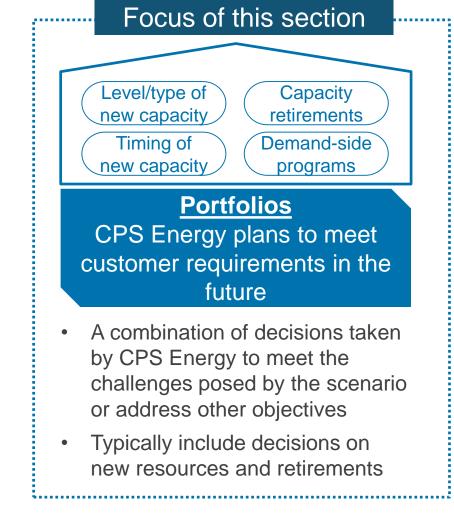
Recap of Progress

Revised Planning Objectives and Metrics

Review of CPS Energy Resource Portfolio Definitions

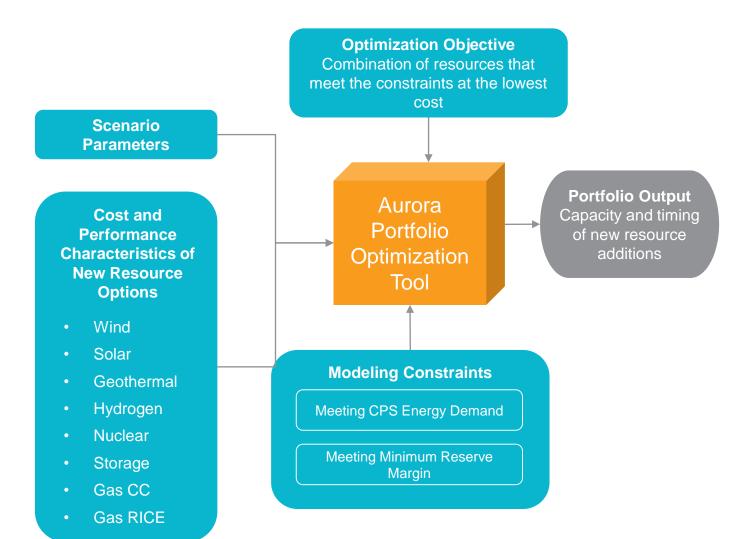

Review of Portfolio Performance under Planning Objectives and Metrics

Timeline and Next Steps



CPS Energy Portfolios

Portfolios are a combination of CPS Energy resource decisions



- Reflect diverse, but possible, futures
- Include multiple linked and correlated key variables
- Independent of resources and resource plans

Portfolio Development Process

- Different resource types provide different contributions to CPS Energy's net peak:
 - Thermal: 100%
 - Solar: Declining contribution over time as net peak shifts further into the evening
 - Wind: 20 57% depending on location
 - Storage: Varying by storage duration and declining over time as net peaks become longer in duration
- Different resource types are expected to operate at different utilization or capacity factors:
 - Thermal: Depending on fuel prices and market electricity prices
 - **Solar:** 28%
 - Wind: 40 42% depending on location
 - Storage: Depending on market prices and duration of storage

CPS Energy Portfolio Concepts

CRA modeled 9 candidate portfolio concepts for CPS Energy (P1 – P9). Each portfolio concept is a combination of a retirement schedule and allowed technologies to meet capacity gaps

	Portfolio	P1	P2	P3	P4	P5	P6	P7	P8	P9
	Allowed Technology to Meet Capacity Gaps	Gas	Blend 1	Renewables	Blend 2			Renewables		
	Spruce 1	Dec	2028	Dec 2028	Dec 2047	Mar 2025	Mar 2025	Mar 2025	Mar 2025	Mar 2028
Retirement Dates	Spruce 2		in Dec 2027 and Dec 2065	Dec 2027	Dec 2065	Mar 2028	Mar 2028	Mar 2028	Convert to gas in Dec 2025 and retire in Mar 2035	Convert to gas in Dec 2028 and retire in Mar 2035
ent D	Braunig 1 - 3	Mar	2025	Mar 2025	Mar 2025	Mar 2025	Mar 2024	Mar 2024	Mar 2025	Mar 2025
rem	Sommers 1	Mar	2027	Mar 2027	Mar 2027	Mar 2027	Mar 2026	Mar 2026	Mar 2027	Mar 2027
t Ret	Sommers 2	Mar	2029	Mar 2029	Mar 2029	Mar 2029	Mar 2028	Mar 2028	Mar 2029	Mar 2029
Existing Fleet	Arthur Von Rosenberg	Dec	2047	Dec 2047	Dec 2047	Dec 2047	Mar 2030	Mar 2030	Dec 2047	Dec 2047
kistin	Rio Nogales	Dec	2049	Dec 2049	Dec 2049	Dec 2049	Mar 2030	Mar 2030	Dec 2049	Dec 2049
ш	Milton B Lee 1 – 4	Dec	2039	Dec 2039	Dec 2039	Dec 2039	Mar 2035	Mar 2040	Dec 2039	Dec 2039
	Milton B Lee 5 - 8	Dec	2045	Dec 2045	Dec 2045	Dec 2045	Mar 2035	Mar 2040	Dec 2045	Dec 2045
								V		

Notes:

15

CPS Energy Portfolios

Proposed by RAC Member Belmares

1. All unit retirements require ERCOT approval.

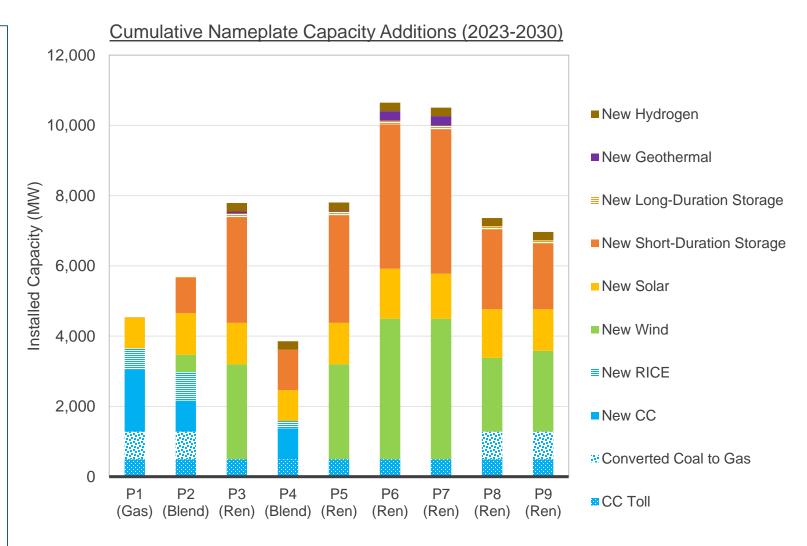
2. When units retire, ERCOT may require transmission reliability upgrades to the grid, which typically take 4 to 5 years (i.e. estimated completion in the 2026 to 2027 timeframe).

3. New generation resources may not be available until 2026, so bridge purchases will be considered as needed.

4. Spruce 2 gas conversion is likely not feasible before 2027, so bridge purchases will be considered in P8 as needed.

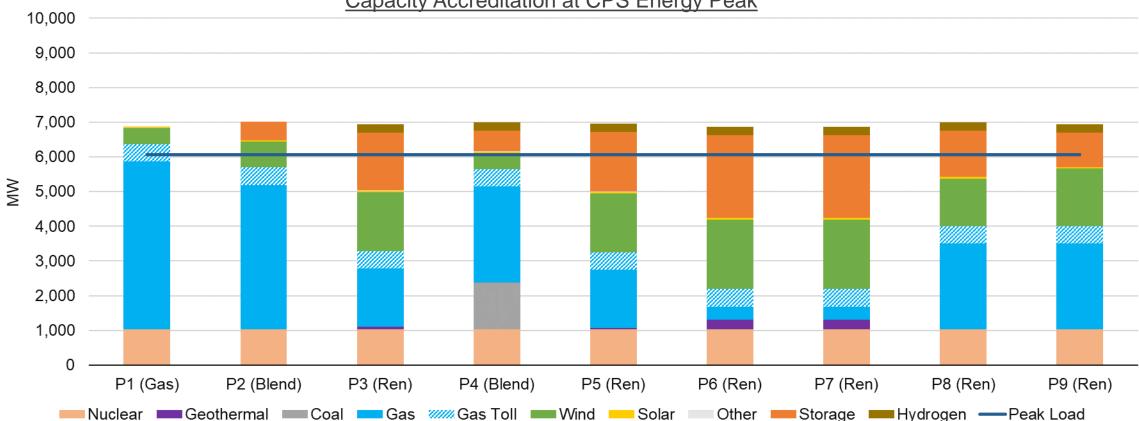
Cumulative Capacity Additions Between 2023 and 2030 (MW)

Portfolio	P1	P2	P3	P4	P5	P6	P7	P8	P9
Allowed Technology	Gas	Blend 1	Renewables	Blend 2			Renewables		
Combined Cycle (CC) ¹	2,260	1,380	500	1,380	500	500	500	500	500
Reciprocating Internal Combustion Engine (RICE)	606	808	N/A	202	N/A	N/A	N/A	N/A	N/A
Wind ²	N/A	500	2,700	N/A	2,700	4,000	4,000	2,100	2,300
Solar ³	880	1,180	1,180	880	1,180	1,420	1,280	1,380	1,180
Short-Duration Storage ⁴	50	1,010	3,010	1,155	3,060	4,110	4,110	2,260	1,860
Long-Duration Storage ^{5,6}	N/A	50	100	-	100	100	100	100	100
Geothermal ⁶	N/A	-	60	-	25	275	275	-	-
Hydrogen ⁶	N/A	-	240	240	240	240	240	240	240
Nuclear – Small Modular	N/A	-	-	-	N/A	N/A	N/A	N/A	N/A
Total New Capacity	3,796	4,928	7,790	3,857	7,805	10,645	10,505	6,580	6,180
Spruce 2 Gas Conversion	785	785	Retire	Retain w/coal	Retire	Retire	Retire	785	785
Market Purchase 2026 ⁷	532	102	304	422	893	785	785	1,560	304
Market Purchase 20277	N/A	N/A	253	N/A	947	20	20	1,771	606
Market Purchase 20287	N/A	N/A	559	N/A	1,185	511	511	599	1,562
Market Purchase 2029 ⁷	N/A	N/A	917	N/A	913	N/A	N/A	600	750


Notes: 1) Includes FlexPower Bundle 500 MW 10-year gas tolling contract; 2) Includes both coastal and west wind; 3) Includes FlexPower Bundle solar; 4) Includes FlexPower Bundle storage, and includes 2-hour, 4-hour, and 8-hour storage; 5) 20-hour storage; 6) Selected only in 2030 due to assumed technology availability; 7) Represents bridged capacity purchase for the year at 23% premium to hourly market price.

Cumulative Capacity Additions Between 2023 and 2030 (MW)

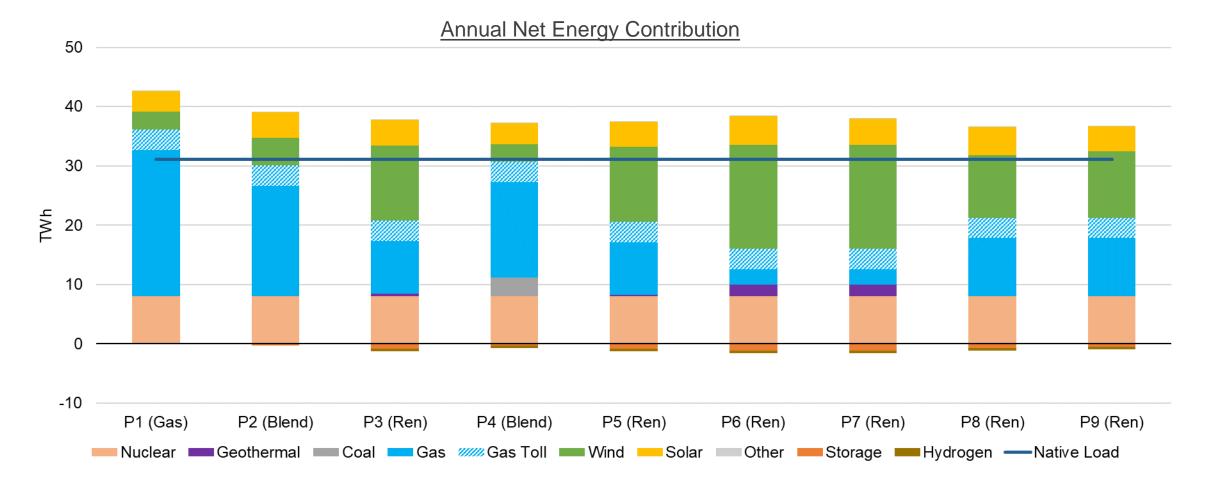
Key Observations


- The FlexPower Bundle gas combined cycle (CC) toll, solar, and 2-hour battery storage are included in all portfolios.
- Spruce 2 converts to natural gas in P1, P2, P8, and P9, and new gas CC and RICE are selected in P1, P2, and P4.
- In portfolios that do not allow new gas capacity (P3, P5 – P9), solar, wind and storage additions are generally selected to replace retired gas and coal capacity.
- Hydrogen-based capacity is selected in all portfolios but P1 in 2030, largely due to the value of the hydrogen Production Tax Credit in the Inflation Reduction Act. In general, hydrogen may provide optionality for CPS Energy to convert gas capacity to burn the fuel at later time if and when the technology has matured and economics become favorable.

CRACharles River Associates

2030 Supply-Demand Balance (MW) by Portfolio

All portfolios are designed to have a reserve margin of at least 13.75% to maintain system reliability. Storage and natural gas plants are the primary dispatchable technologies by 2030.


Capacity Accreditation at CPS Energy Peak

Note: 1) Solar availability at the CPS Energy net peak is expected to be below 5% by 2030.

2030 Generation Mix (TWh) By Portfolio

All portfolios remain net long energy by 2030.

Notes: (1) Hydrogen is represented as a net negative contributor, given efficiency losses associated with converting green electricity to hydrogen, which can then be used for power generation; (2) energy efficiency will be added to the pie charts in the scorecard.

Selected Technologies for Capacity Additions Vary Over Different Horizons

- Additions through 2029 include the FlexPower Bundle and established technologies like gas combined cycle, gas RICE, wind, solar, and short-duration storage.
- Over the long-term, long-duration storage, hydrogen, and geothermal resources are selected, although CPS Energy will have future opportunities to assess the long-term plan as technology evolves

	S	elec	ted I	Betw	veen	2023	3 and	d 202	29	S	elec	ted E	Betw	een	2030) and	1 203	9			Sele	ected	Fro	m 2(940+		
Technology	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8	P 9	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8	P 9	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8	P 9
FlexPower Bundle																											
Gas CC																											
Gas RICE																											
Wind																											
Solar																											
Short Storage																											
Long Storage																											
Geothermal																											
Hydrogen																											

Cumulative Capacity Additions Between 2031 and 2047 (MW)

Longer term additions include advanced emerging technologies, including enhanced geothermal, hydrogen, and longduration storage technologies

Portfolio	P1	P2	P3	P4	P5	P6	P7	P8	P9
Allowed Technology	Gas	Blend 1	Renewables	Blend 2					
Combined Cycle	N/A	-	N/A	-	N/A	N/A	N/A	N/A	N/A
Reciprocating Internal Combustion Engine (RICE)	3,838	2,020	N/A	1,616	N/A	N/A	N/A	N/A	N/A
Wind ¹	N/A	1,800	3,900	3,100	4,000	3,700	3,900	4,200	4,300
Solar	N/A	3,580	2,560	3,390	2,640	2,890	2,870	3,080	2,780
Short-Duration Storage ²	N/A	1,700	500	-	450	50	350	50	50
Long-Duration Storage ³	N/A	150	1,300	350	1,250	2,000	2,200	2,050	1,600
Geothermal	N/A	25	30	-	-	-	-	-	-
Hydrogen	N/A	720	1,440	480	1,440	1,440	960	1,200	1,440
Nuclear – Small Modular	N/A	-	-	-	N/A	N/A	N/A	N/A	N/A
Total New Capacity	3,838	9,995	9,730	8,936	9,780	10,080	10,280	10,580	10,170

Notes: 1) Includes both coastal and west wind; 2) Includes 2-hour, 4-hour, and 8-hour storage; 3) 20-hour storage

Portfolio Summary

Abbreviation	Allowed Technologies	Action on Existing Generating Fleet	2030 Generation Mix	A	Abbreviation	Allowed Technologies	Action on Existing Generating Fleet	2030 Generation Mix
P1 (Gas)	Gas	Spruce 1 shut down in 2028. Spruce 2 converted to gas in 2027.		1	P5 (Ren)	Renewables	Spruce 1 shut down in 2025. Spruce 2 shut down in 2028.	
P2 (Blend 1)	All	Spruce 1 shut down in 2028. Spruce 2 converted to gas in 2027.		1	P6 (Ren)	Renewables	Spruce 1 shut down in 2025. Spruce 2 shut down in 2028. All gas units shut down by 2035.	
P3 (Ren)	Renewables	Spruce 1 shut down in 2028. Spruce 2 shut down in 2027.		1	P7 (Ren)	Renewables	Spruce 1 shut down in 2025. Spruce 2 shut down in 2028. All gas units shut down by 2040.	
P4 (Blend 2)	All	Both Spruce units run on coal beyond 2040		1	P8 (Ren)	Renewables	Spruce 1 shut down in 2025. Spruce 2 shut down in 2025, and re-opened as gas unit in 2028	
■ Nucle ■ Gas ■ Solar ■ Hydro		 Geothermal ⊗ Gas Toll Other Energy Efficiency 	CoalWindStorage	I	P9 (Ren)	Renewables	Spruce 1 shut down in 2028. Spruce 2 converted to gas in 2028	

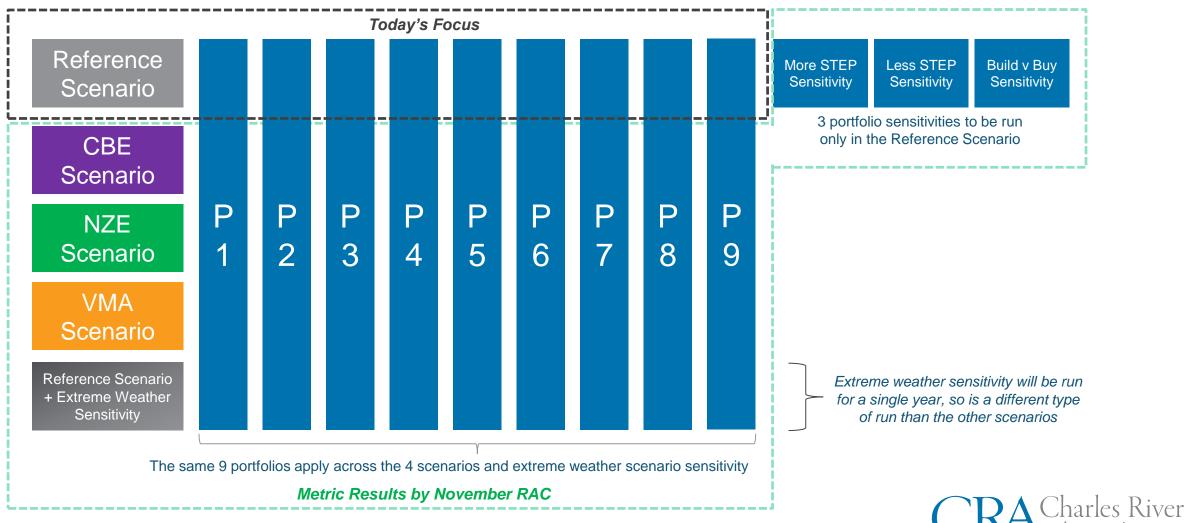
Agenda

Recap of September 15 RAC Meeting

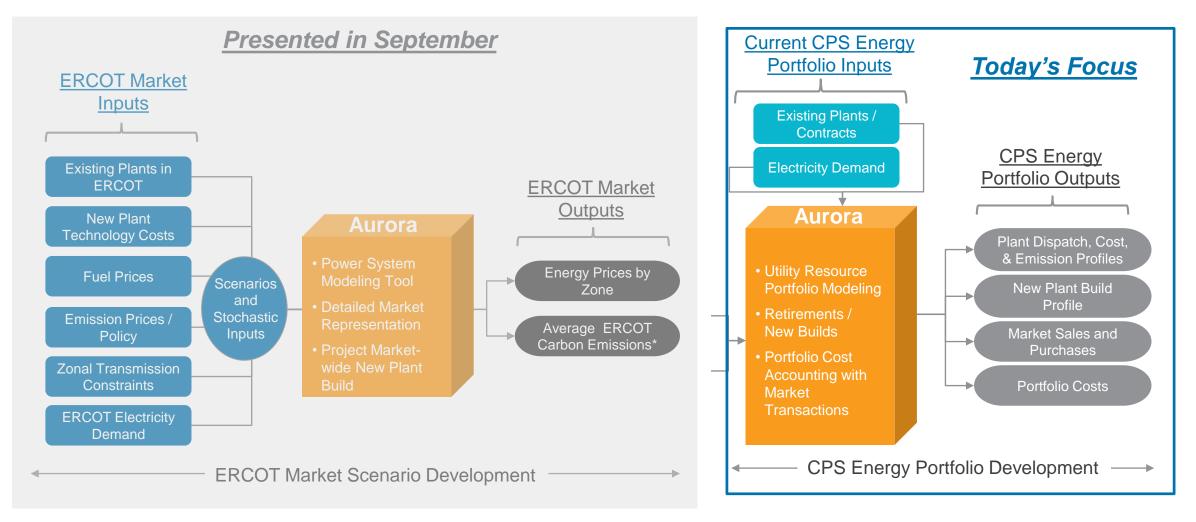
Recap of Progress

Revised Planning Objectives and Metrics

Review of CPS Energy Resource Portfolio Definitions


Review of Portfolio Performance under Planning Objectives and Metrics

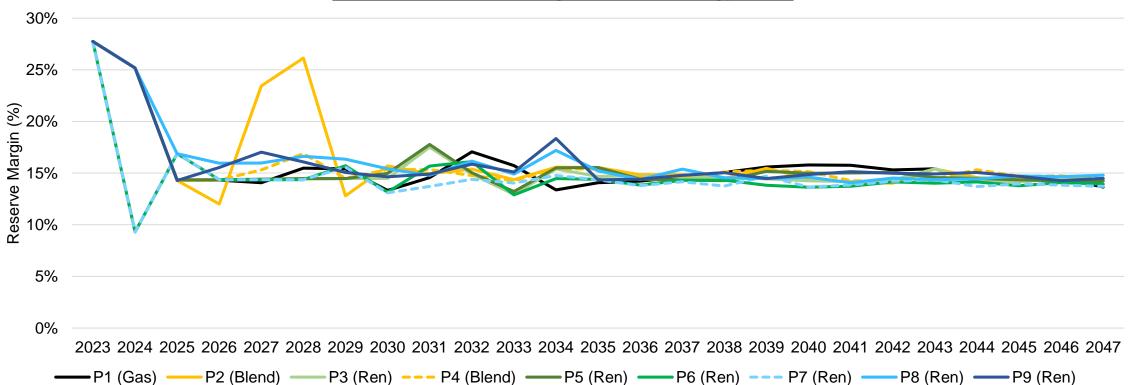
Timeline and Next Steps


CPS Energy Portfolio Evaluation

Today we are providing the metric results for the 9 portfolios in the Reference Scenario. The metric results for the remaining scenarios will be provided during November RAC

Recap of the Modeling Process

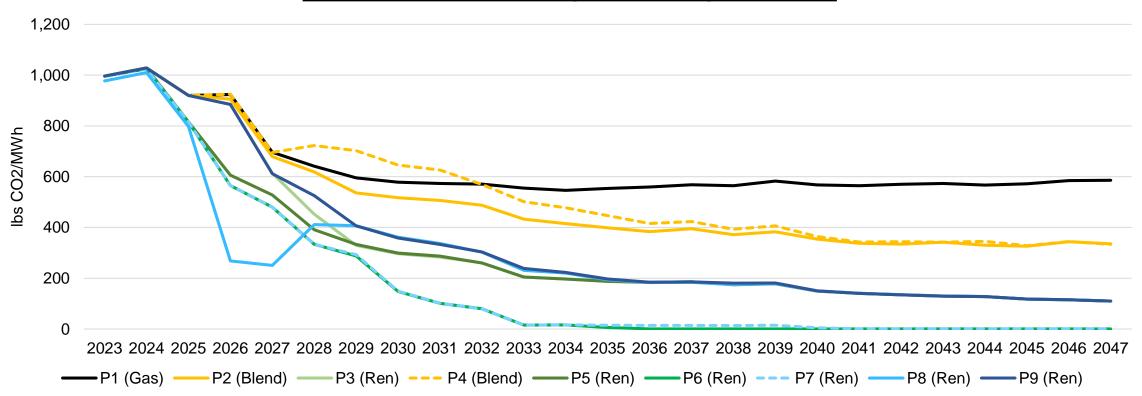
The modeling process includes ERCOT market analysis and CPS Energy-specific portfolio evaluation



Note: *This is used to measure carbon emissions from electricity purchases by CPS Energy

Capacity Headroom

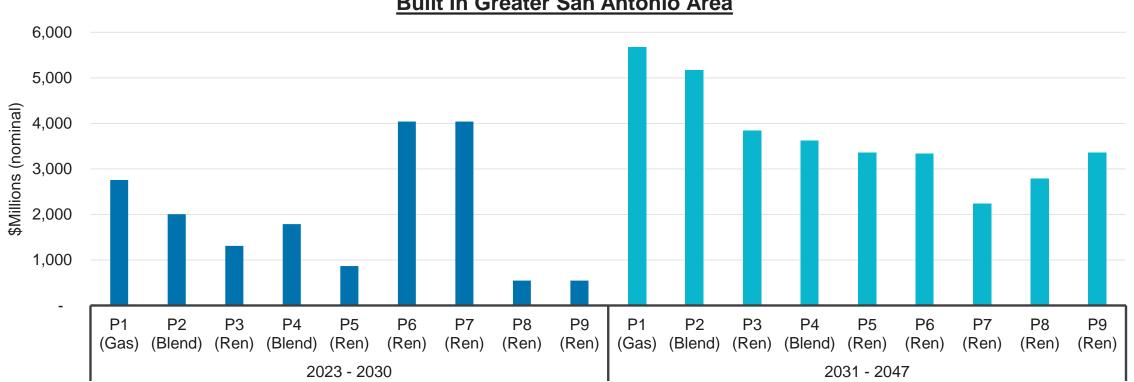
All portfolios are optimized around a 13.75% reserve margin.



Portfolio Reserve Margin at CPS Energy Peak

Portfolio Emission Intensity

Average emission intensity of electricity generated by CPS Energy declines across all portfolios



Portfolio Emission Intensity of Electricity Generation

Local Economic Impact

All portfolios provide some investment in new generation capacity in the local area.

Cumulative Capital Expenditures For New Generation Capacity Built In Greater San Antonio Area

Portfolio Metric Results – Reference Scenario ONLY

- Preliminary Reference Scenario results follow in the next few slides
- No decisions will be made based on these preliminary metric results
- Slated for delivery at the November RAC meeting are:
 - 3 remaining scenarios: Carbon-Based Economy, Net Zero Carbon Emissions, and the Volatile Market
 - Affordability metrics
 - Sensitivity results: Extreme weather exposure, Expanded STEP, Scaled-Back STEP, & Build vs Buy

	System	System Reliability & Climate Resiliency Environmental Sustainability Affordability				ty		System F	Flexibility	Workfor	ce Impact						
	Diversity of Generation Mix	Capacity Headroom	Extreme Wea	ather Exposure	Progress 1	Fowards C	City of SA	CAAP Goals		Bill Impact		Revenue R	equirements	Market Purchases	Dispatchability	CPS Energy Workforce Impact	Local Economic Impact
	Generation Mix (MWh)	Expected Reserve Margin (%)	Rev. Req. Extreme Weather (\$Billion)	Extreme Weather Market Purchases (MWh)	% CO2 Intensity Reduction Relative to 2016 (Ref Scenario)	Emissior (Ibs CO		% reduction in demand due to energy efficiency	Monthly Bills (Ref Scenario) (\$/Month)	Monthly Bills (Scenario Range) (\$/Month)	Monthly Bills (Highest Scenario) (\$/Month)	PV Revenue Requirements (Ref Scenario) (\$Billion)	PV Revenue Requirements (Ref Scenario) (\$Billion)	% of CPS Energy demand that is met through ERCOT market purchases	% of CPS Energy Capacity that is Dispatchable	Estimated Number of CPS Energy Generation Employees	Capital expenditures for new generation capacity built in greater San Antonio area (\$Millions)
	2030	2030	2030	2030	2030	2030	2040	2030	2030	2030	2030	2023 - 2030	2023-2047				
P1	2	13.7%			37%	578	567	5.2%						1%	61%	260	2,758
P2		15.7%			44%	517	354	5.2%						4%	57%	250	2,004
P3		14.5%			68%	297	149	5.2%						13%	46%	110	1,310
P4	ا	15.3%	In V	Vork	30%	646	364	5.2%			n Woi	'k		7%	63%	290	1,787
P5		15.0%			68%	299	149	5.2%						13%	46%	100	866
P6		13.2%			84%	148	0	5.2%						18%	39%	110	4,041
P7		13.1%			84%	149	5	5.2%						18%	39%	110	4,041
P8		15.4%			61%	361	150	5.2%						11%	48%	150	548
P9		14.6%			61%	358	150	5.2%						9%	46%	150	548
 Nuclear Gas Tol Storage 	II = V	Geothermal Vind Hydrogen	= Coal <mark>-</mark> Sola • Ener		 Gas Other 			Less	Favorable		Legend	Mor	e Favorable			(RA

Portfolio Metric Results – Reference Scenario ONLY

	System	Reliability	& Climate Re	esiliency	Env	vironmenta	l Sustaina	bility		A	ffordability		
	Diversity of Generation Mix	Capacity Headroom	Extreme Wea	ather Exposure	Ŭ	s Towards C	ity of SA CA	AP Goals		Bill Impact		Revenue R	equirements
	Generation Mix (MWh)	Expected Reserve Margin (%)	Rev. Req. Extreme Weather (\$Billion)	Extreme Weather Market Purchases (MWh)	% CO2 Intensity Reduction Relative to 2016 (Ref Scenario)		Emission Intensity (Ibs CO2/MWh)		Monthly Bills (Ref Scenario) (\$/Month)	Monthly Bills (Scenario Range) (\$/Month)	Monthly Bills (Highest Scenario) (\$/Month)	PV Revenue Requirements (Ref Scenario) (\$Billion)	PV Revenue Requirements (Ref Scenario) (\$Billion)
	2030	2030	2030	2030	2030	2030	2040	2030	2030	2030	2030	2023 – 2030	2023 - 2047
P1	2	13.7%			37%	578	567	5.2%					
P2		15.7%			44%	517	354	5.2%					
P3		14.5%			68%	297	149	5.2%					
P4		15.3%			30%	646	364	5.2%					
P5		15.0%			68%	299	149	5.2%					
P6		13.2%			84%	148	0	5.2%					
P7		13.1%			84%	149	5	5.2%					
P8		15.4%			61%	361	150	5.2%					
P9		14.6%			61%	358	150	5.2%					

 Nuclear Gas Toll

Storage

Geothermal

Wind Solar Hydrogen

Energy Efficiency

Coal

Notes:

Gas

Other

1. Lighter shade means "more favorable."

2. Gray shading represents metrics that will be

populated after all scenario and sensitivity analysis.

30

Portfolio Metric Results – Reference Scenario ONLY

	System F	Flexibility	Workford	ce Impact
	Market Purchases	Dispatchability	CPS Energy Workforce Impact	Local Economic Impact
	% of CPS Energy demand that is met through ERCOT market purchases	% of CPS Energy Capacity that is Dispatchable	Estimated Number of CPS Energy Generation Employees	Capital expenditures for new generation capacity built in greater San Antonio area (\$Millions)
	2030	2030	2030	2023 – 2030
P1	1%	61%	260	2,758
P2	4%	57%	250	2,004
P3	13%	46%	110	1,310
P4	7%	63%	290	1,787
P5	13%	46%	100	866
P6	18%	39%	110	4,041
P7	18%	39%	110	4,041
P8	11%	48%	150	548
P9	9%	46%	150	548

Note:

1. Lighter shade means "more favorable."

Key Observations from Portfolio Metric Results – Reference Scenario

	System	Reliability	& Climate Re	siliency				
	Diversity of Generation Mix	Capacity Headroom	Extreme We	ather Exposure	•			
	Generation Mix (MWh)	Expected Reserve Margin (%)	Rev. Req. Extreme Weather (\$Billion)	Extreme Weather Marke Purchases (MWh)	ət			
	2030	2030	2030	2030				
P1		13.7%						
P2		15.7%						
P3		14.5%						
P4		15.3%						
P5		15.0%						
P6		13.2%						
P7		13.1%						
P8		15.4%						
P9		14.6%						
Legend	- Nuclear	 Geothe 	rmal = Co	al	G			
³² Gas Toll		■ Wind ■ Hydrog		■ Solar ■ n ■ Energy Efficiency				

System Reliability & Climate Resiliency

Generation Mix

- P8 and P9 have the most diverse generation mix, with no single fuel source accounting for more than half of total generation
- P2, P4, P6 and P7 all perform similarly, with P2 and P4 being more gasheavy and P6 and P7 more wind-heavy.
- P1 has the least diverse generation mix with gas accounting for two-thirds of the total.

Reserve Margin

- All portfolios have an expected reserve margin range around 13 15%
- P6 and P7 have the lowest reserve margin due to early retirements of Rosenberg and Rio Nogales, as well as potential limit on the market's ability to deliver sufficient new wind and storage additions to replace the retired capacity.

All unit Retirements require ERCOT approval & associated transmission reliability upgrades could determine final retirement dates.

Notes:

- 1. Lighter shade means "more favorable."
- 2. Gray shading represents metrics that will be populated after scenario and sensitivity analysis.

Key Observations from Portfolio Metric Results – Reference Scenario

	Environmental Sustainability							
	Progress To	owards Ci	ty of SA C	AAP Goals				
	% Emission Intensity Reduction Relative to 2016 (Ref Scenario)		n Intensity 2/MWh)	% reduction in demand due to energy efficiency				
	2030	2030	2040	2030				
P1	37%	578	567	5.2%				
P2	44%	517	354	5.2%				
P3	68%	297	149	5.2%				
P4	30%	646	364	5.2%				
P5	68%	299	149	5.2%				
P6	84%	148	0	5.2%				
P7	84%	149	5	5.2%				
P8	61%	361	150	5.2%				
P9	61%	358	150	5.2%				

Environmental Sustainability

- <u>CO2 Emission Intensity</u>
 - By 2030, P2, P3, & P5 P9 out-perform the 2030 CAAP target of 41% emission reduction (below 543 lb/MWh).
 - By 2030, P1 & P4 do not meet the 2030 CAAP target of 41% emission reduction (below 543 lb/MWh) without additional mitigation.
 - By 2040, P3, & P5 P9 out-perform the 2040 CAAP target of 71% emission reduction (below 267 lb/MWh).
 - By 2040, P1, P2, & P4 do not meet the 2040 CAAP target of 71% emission reduction (below 267 lb/MWh) without additional mitigation.

Energy Efficiency Contribution

- The contribution of energy efficiency is the same across all portfolios and is based on the baseline Sustainable Tomorrow Energy Plan (STEP).
- Sensitivity analysis to test the impact of an expanded STEP program and a scaled back
 STEP program is slated to be available at the November RAC meeting.

Note:

33

1. Lighter shade means "more favorable."

Key Observations from Portfolio Metric Results – Reference Scenario

	System F	Flexibility			
	Market Purchases	Dispatchability			
	% of CPS Energy demand that is met through ERCOT market purchases	% of CPS Energy Capacity that is Dispatchable			
	2030	2030			
P1	1%	61%			
P2	4%	57%			
P3	13%	46%			
P4	7%	63%			
P5	13%	46%			
P6	18%	39%			
P7	18%	39%			
P8	11%	48%			
P9	9%	46%			

System Flexibility

- Market Purchases (the degree we rely on ERCOT)
 - P1, P2, P4, and P9 have the lowest market purchases due to the reliance on controllable (dispatchable) generation.
 - P6 and P7 have the greatest reliance on market purchases due to the retirements of all coal and gas units by 2030 and the increased deployment of intermittent resources, resulting in in reliance on ERCOT during certain times of the year and day when wind and solar are not fully available.
- Dispatchability (the degree we control generation output)
 - P1, P2 and P4 have the highest share of capacity that is dispatchable, due largely to the additions of new gas units in the late 2020s.
 - P3, P5, P8 and P9 have existing gas and new storage and hydrogen additions that provide dispatchable capacity.
 - P6 and P7 have the lowest share of dispatchable capacity, as they rely heavily on wind and solar for energy contributions.

Note:

1. Lighter shade means "more favorable."

Key Observations from Portfolio Metric Results – Reference Scenario

	Workforce Impact	
	CPS Energy Workforce Impact	Local Economic Impact
	Estimated Number of CPS Energy Generation Employees	Capital expenditures for new generation capacity built in greater San Antonio area (\$Millions)
	2030	2023 – 2030
P1	260	2,758
P2	250	2,004
P3	110	1,310
P4	290	1,787
P5	100	866
P6	110	4,041
P7	110	4,041
P8	150	548
P9	150	548

Workforce Impact

- <u>CPS Energy Workforce Impact</u>
 - P1, P2, and P4 retain the most CPS Energy jobs, due to fewer capacity retirements by 2030. New gas plants allow CPS Energy to re-deploy employees from retired plants.
 - P3, P5, P6, and P7 retain fewer jobs due to earlier retirements of CPS Energy-owned power plants.

Local Economic Impact

- P6 and P7 have the highest capital expenditures in the local area, driven largely by new geothermal capacity.
- P1 and P2 include the most near-term gas additions, which are expected to be constructed in the local region.
- Although P5, P8 and P9 add significant renewable capacity, it is expected that most wind and solar would be sited outside of the greater San Antonio area.

Note: 1. Lighter shade means "more favorable."

Agenda

Recap of September 15 RAC Meeting

Recap of Progress

Revised Planning Objectives and Metrics

Review of CPS Energy Resource Portfolio Definitions

Review of Portfolio Performance under Planning Objectives and Metrics

Timeline and Next Steps

Timeline – Generation Plan Update

	Jun	Jul	Aug	Sep	Oct	Nov	Dec
RAC Agenda	Market & modeling intro (6/16)	CRA Process intro (7/21)	Dot plot / Scenario inputs / Process detail (8/18)	Scenario outputs / Portfolios (9/15)	Metrics – REF scenario (10/20)	RAC Q&A Mtg (11/3) Metrics – All scenarios/ Preferred Plan (11/17)	RAC Q&A Mtg (12/2) RAC Portfolios (12/6) RAC Mtg (12/15)
Public Input	RAC meeting date	RAC meeting date	RAC meeting date	Launch online survey & Press conference Employee Townhall (9/13) RAC meeting date	1st Public Open House (a.m. & p.m.) (10/6) RAC meeting date	Public Virtual Town Hall (11/1) RAC meeting date	2nd Public Open House (a.m. & p.m.) (12/1) RAC meeting date
RAC & RAC Peer Review				Review inputs & ERCOT scenario outputs	Review portfolio REF results	RAC developing report to BOT	RAC reports to BOT (12/19)
CPS Energy Preferred Plan						CRA incorporates feedback	BOT/RAC process
Metrics		Drat	ft Metrics	Final Metrics			
Scenario Development		Scenario narratives	Scenario parameters	Sensitivity parameters			
Portfolio Construction			Portfol	io definition			
Portfolio and Financial Analysis				Populated Metrics – REF scenario	Populated Metrics – All scenarios		

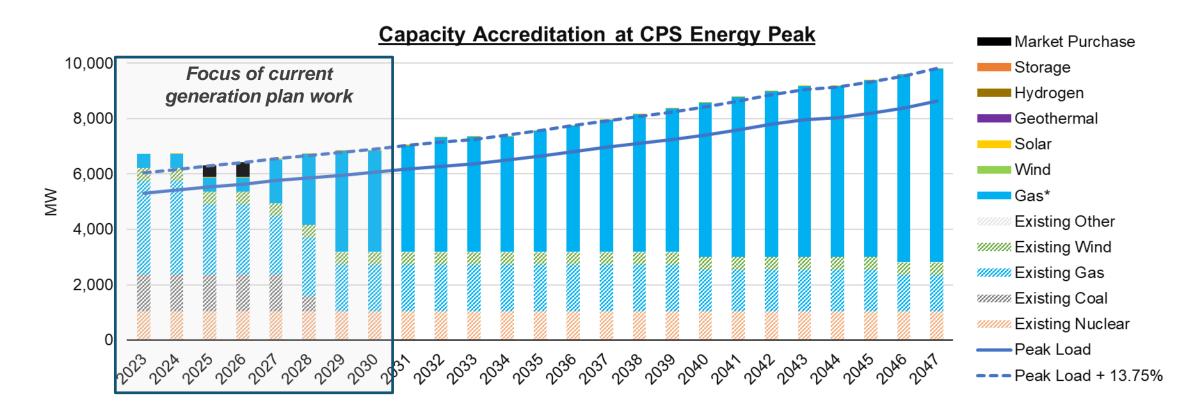
Note: Updates from Sep RAC meeting highlighted in yellow.

Next Steps

- Provide full Reference Case metrics
- Evaluate portfolio performance in the 3 remaining scenarios plus sensitivities

Appendix: Portfolio Composition Details

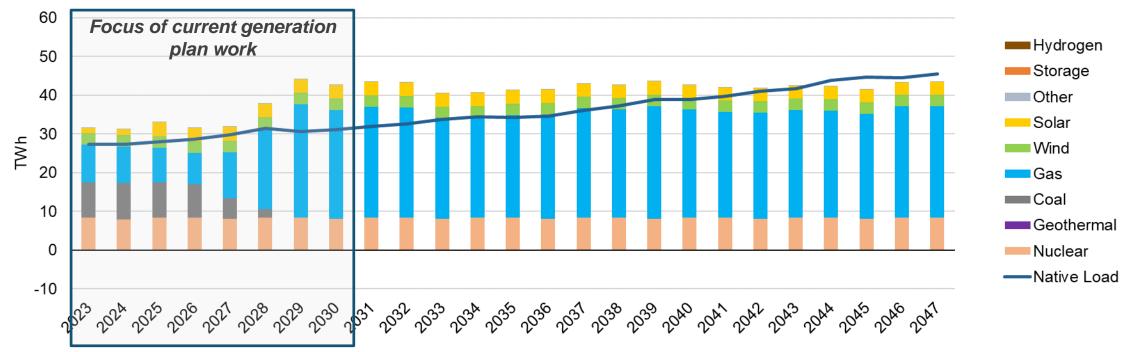
≩ 1,500


Portfolio 1 (C Annual Reso

omposition [Details							Existing F	leet Retire	ment Dates			
(C. 1)				Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg	Rio Nogales	Milton B Lee 1 – 4	Milton B Lee 5 - 8
	o 1 (Gas) – Resource /		P1	Gas	Dec 2028	Convert to gas in Dec 2027 and retire in Dec 2065	Mar 2025	Mar 2027	Mar 2029	Dec 2047	Dec 2049	Dec 2039	Dec 2045
3,000		of current n plan work											
2,500													
2,000													
<u>≩</u> 1,500													
1,000													
500 -							88	. 8			88	8	~~
G	2023 2024 2025 2026	20 ²¹ 20 ²⁰ 20 ²⁰ 20 ³⁰	2020 202	¹ 200 20	2 ⁰⁵⁰ 1	036 ² 031	200° 200	2040 2	9A1 20A2	2043 2044	2045 20	A ⁶ 2047	
New C	C*	New RICE			New	Wind			New	Solar			
New S	Short-Duration Stor	age ≡New Long-D	uration S	Storage	■ New	Geotherr	mal		■ New	Hydrogen			
■Marke	t Purchase	nversior	ı										

Portfolio 1 (Gas) – Annual Supply Demand Balance ^F

					Existing F	leet Retirei	ment Dates			
	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
P1	Gas		Convert to gas in Dec 2027 and retire in Dec 2065	Mar 2025	Mar 2027	Mar 2029	Dec 2047	Dec 2049	Dec 2039	Dec 2045

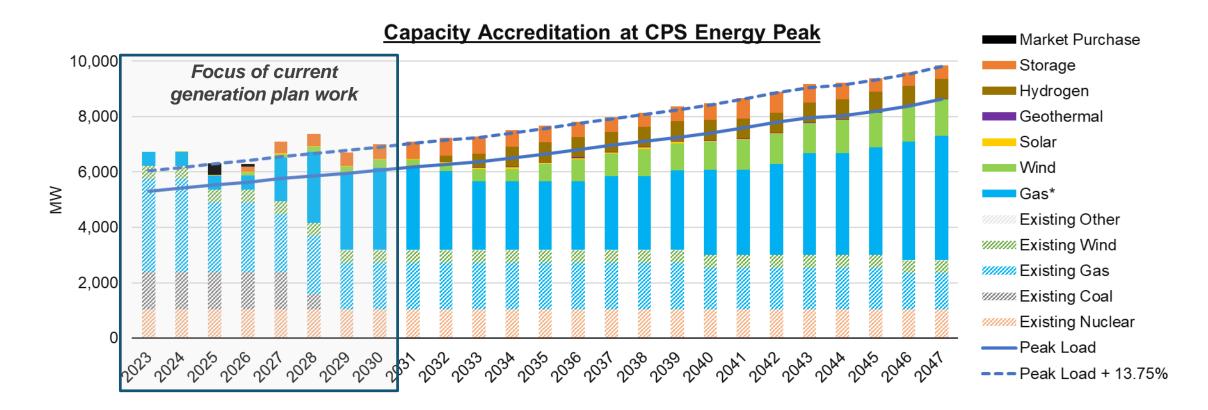


*Gas includes the gas tolling contract in the FlexPower Bundle and Spruce 2 coal-to-gas conversion

Portfolio 1 (Gas) – Annual Generation Mix (TWh)

					Existing F	leet Retire	ment Dates			
	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
P1	Gas	Dec 2028	Convert to gas in Dec 2027 and retire in Dec 2065	Mar 2025	Mar 2027	Mar 2029	Dec 2047	Dec 2049	Dec 2039	Dec 2045

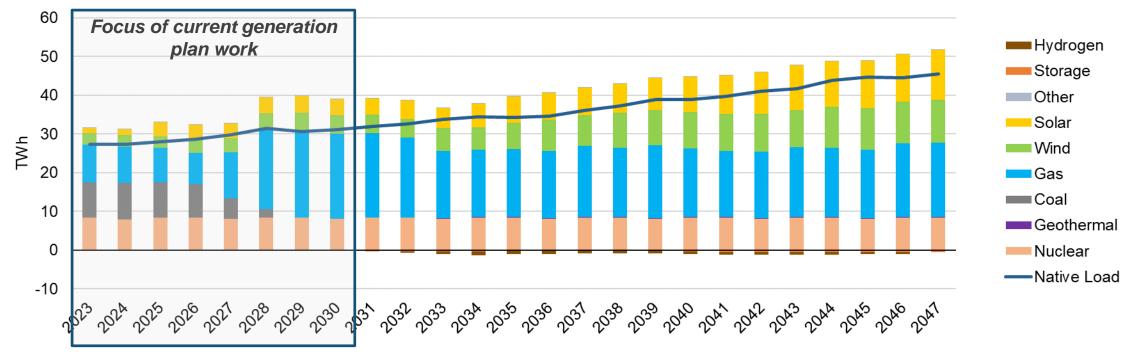
≩ 1,500


Portfolio 2 (E Annual Resc

omposition Details						Existing F	leet Retire	ment Dates			
		Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg	Rio Nogales	Milton B Lee 1 – 4	Milton B Lee 5 - 8
ortfolio 2 (Blend 1) nnual Resource Ad		Blend 1	Dec 2028	Convert to gas in Dec 2027 and retire in Dec 2065	Mar 2025	Mar 2027	Mar 2029	Dec 2047	Dec 2049	Dec 2039	Dec 2045
3,000 Focus of cu											
2,500											
2,000											
§ 1,500											
1,000											
500											
2023 2024 2025 2020 202	1 202° 202° 203° 203° 2031	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 ⁰ 2000 1	03° 2031	10 ⁰⁰ 100	2040 25	94° 2042	2043 2044	2045 20	A6 2041	
New CC*	New RICE		New	Wind			New	Solar			
New Short-Duration Storage	e ≡New Long-Duration S	Storage	■ New	Geotherr	mal		■ New	Hydrogen	l		
■Market Purchase	Spruce 2 Conversion										

Portfolio 2 (Blend 1) – Annual Supply Demand Balance P2

					Existing F	leet Retire	ment Dates			
	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
P2	Blend 1	Dec 2028	Convert to gas in Dec 2027 and retire in Dec 2065	Mar 2025	Mar 2027	Mar 2029	Dec 2047	Dec 2049	Dec 2039	Dec 2045


*Gas includes the gas tolling contract in the FlexPower Bundle and Spruce 2 coal-to-gas conversion.

Portfolio 2 (Blend 1) – Annual Generation Mix (TWh)

					Existing F	leet Retirei	ment Dates			
	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
P2	Blend 1	Dec 2028	Convert to gas in Dec 2027 and retire in Dec 2065	Mar 2025	Mar 2027	Mar 2029	Dec 2047	Dec 2049	Dec 2039	Dec 2045

Annual Net Energy Contribution

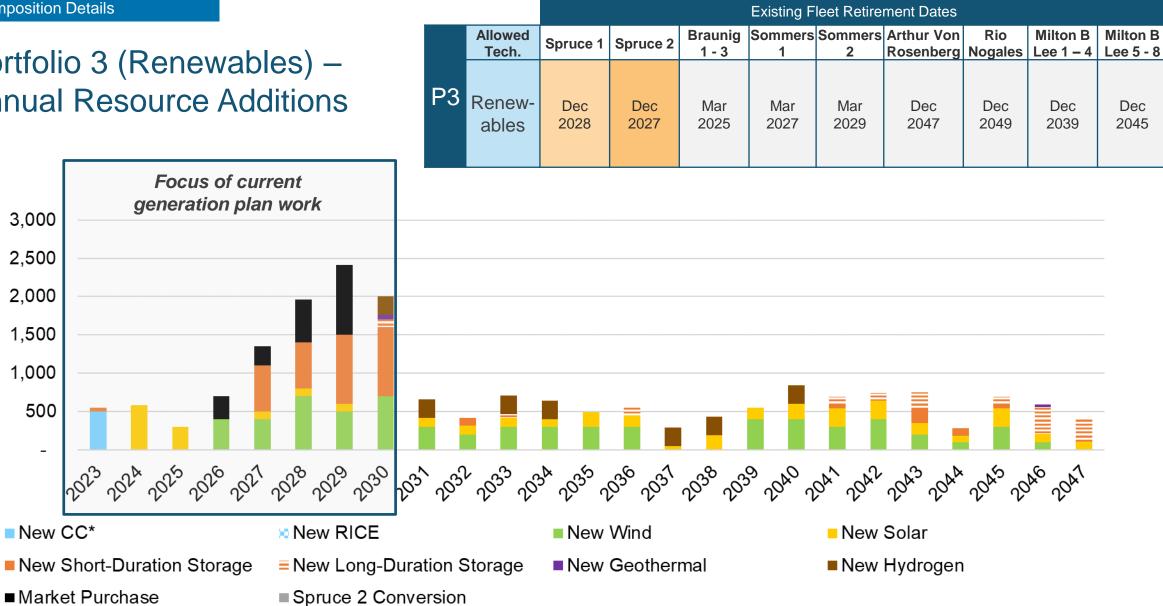
CRA^{Charles} River Associates

2,500

2,000

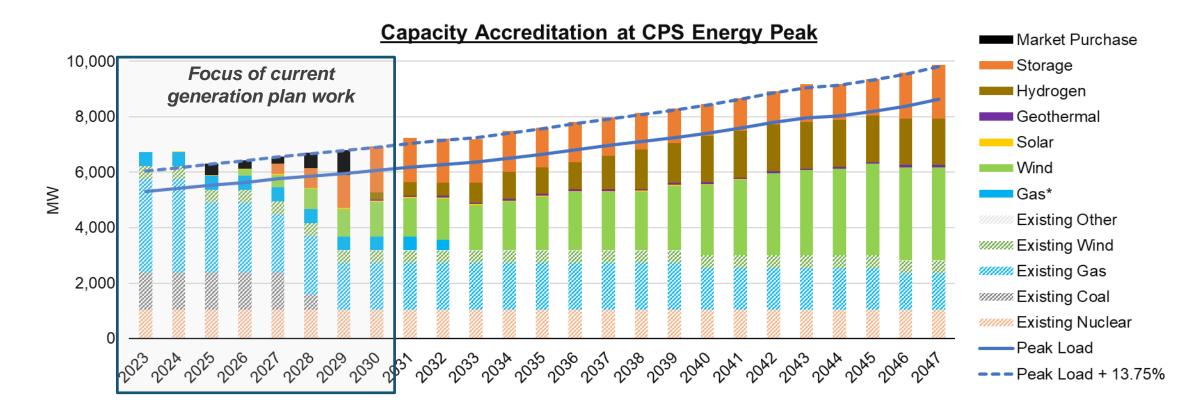
1,500

1,000


500

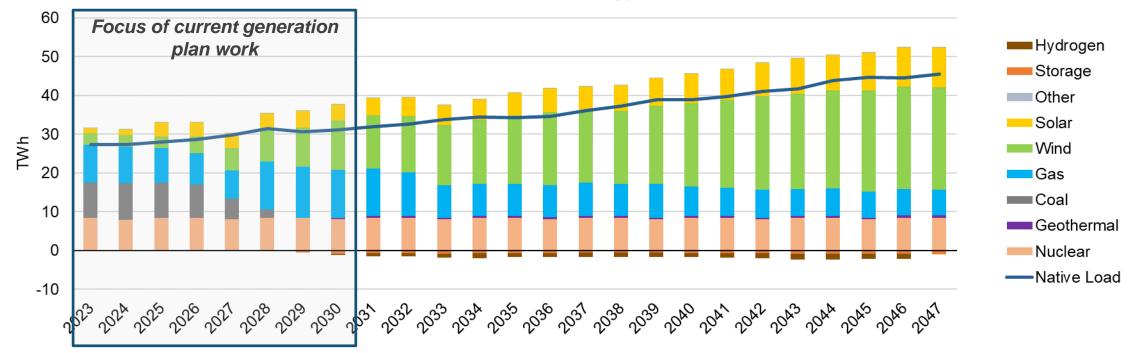
-

New CC*


MΜ

Portfolio 3 (Renewables) -**Annual Resource Additions**

olio Composition Details					Existing F	leet Retire	ment Dates			
Dartfalia 2 (Danawahlaa)	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
Portfolio 3 (Renewables) – Annual Supply Demand Balance	P3 Renewables	Dec 2028	Dec 2027	Mar 2025	Mar 2027	Mar 2029	Dec 2047	Dec 2049	Dec 2039	Dec 2045



*Gas includes the gas tolling contract in the FlexPower Bundle.

Portfolio 3 (Renewables) – Annual Generation Mix (TWh)

					Existing F	leet Retire	ment Dates			
	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
P3	Renew- ables	Dec 2028	Dec 2027	Mar 2025	Mar 2027	Mar 2029	Dec 2047	Dec 2049	Dec 2039	Dec 2045

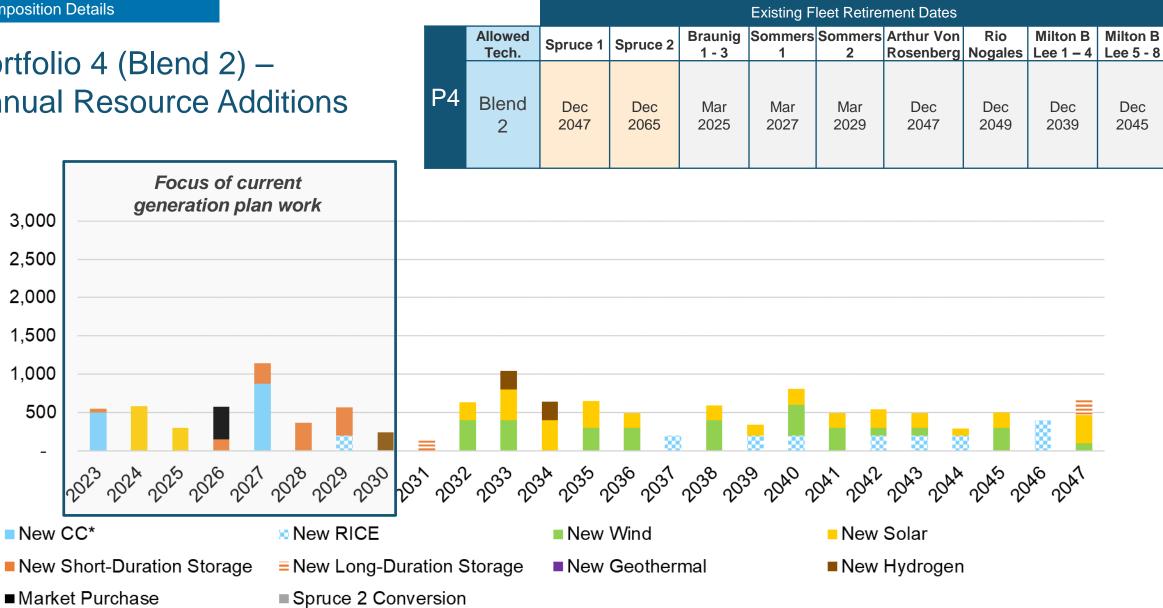
2,500

2,000

1,500

1,000

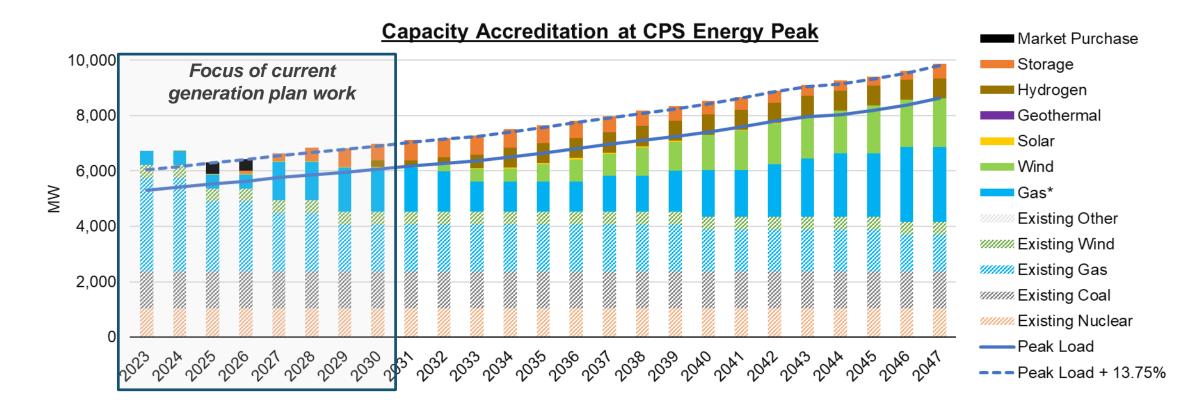
500


-

New CC*

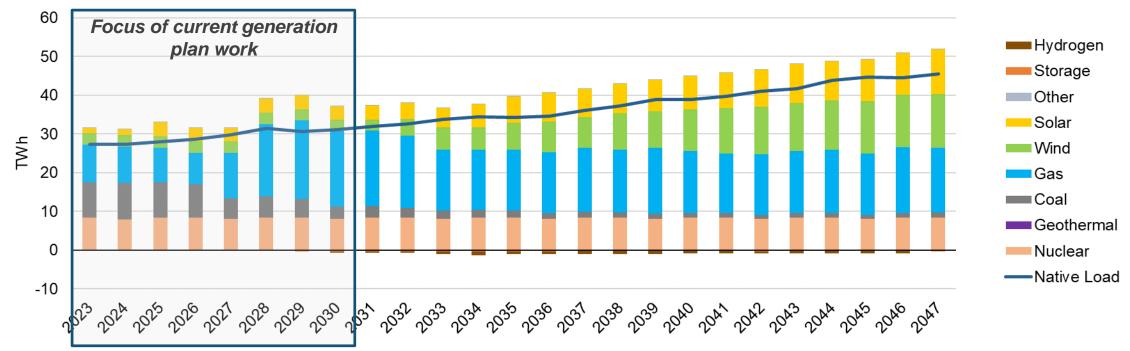
2023

MΜ


Portfolio 4 (Blend 2) – **Annual Resource Additions**

Portfolio 4 (Blend 2) – Annual Supply Demand Balance P²

					Existing F	leet Retire	ment Dates			
	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
P4	Blend 2	Dec 2047	Dec 2065	Mar 2025	Mar 2027	Mar 2029	Dec 2047	Dec 2049	Dec 2039	Dec 2045



^{*}Gas includes the gas tolling contract in the FlexPower Bundle.

Portfolio 4 (Blend 2) – Annual Generation Mix (TWh)

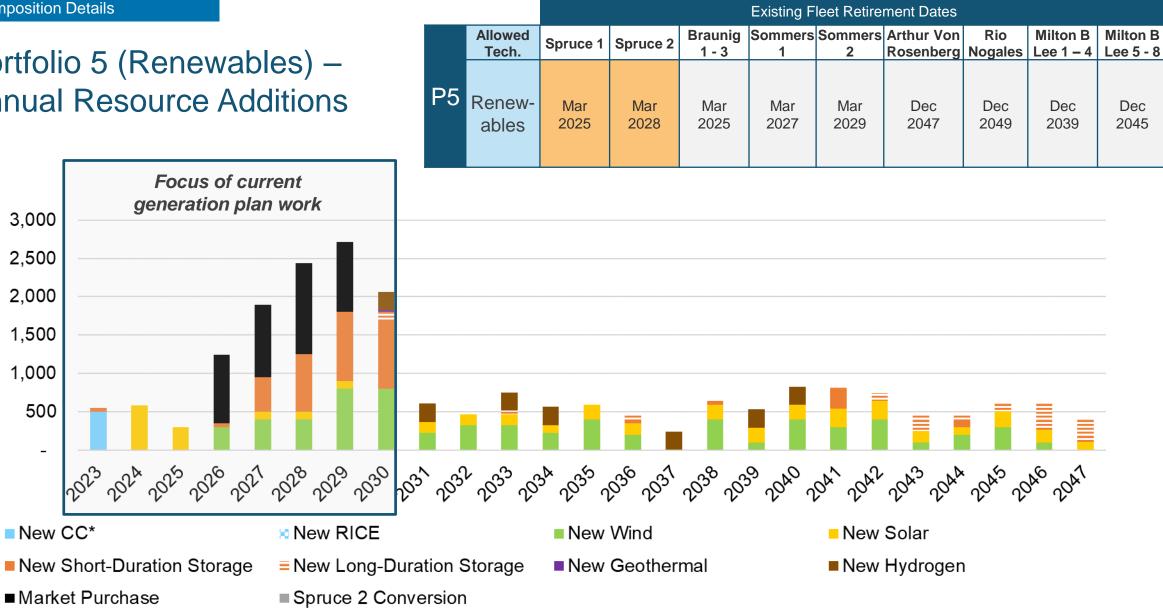
					Existing F	leet Retirei	ment Dates			
	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
P4	Blend 2	Dec 2047	Dec 2065	Mar 2025	Mar 2027	Mar 2029	Dec 2047	Dec 2049	Dec 2039	Dec 2045

2,500

2,000

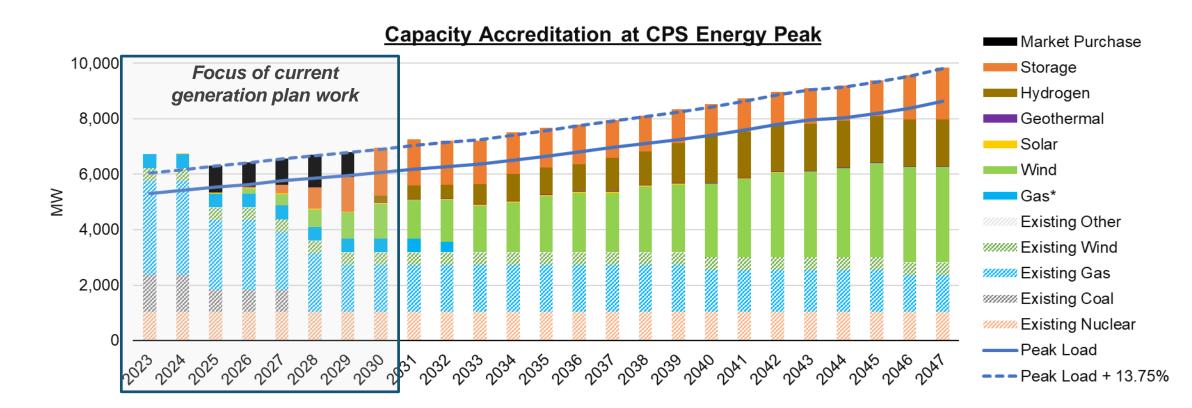
1,500

1,000


500

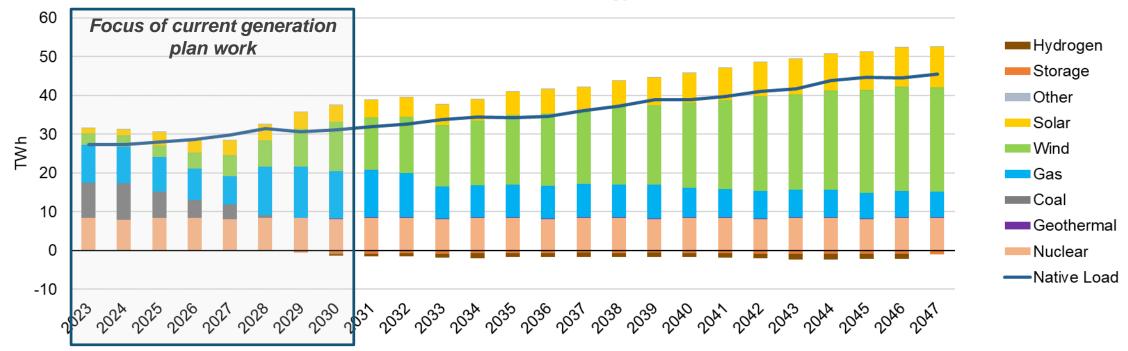
-

New CC*


λŅ

Portfolio 5 (Renewables) -**Annual Resource Additions**

blio Composition Details					Existing F	leet Retire	ment Dates			
Dertfelie E (Denewyshlee)	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
Portfolio 5 (Renewables) – Annual Supply Demand Balance	P5 Renew- ables	Mar 2025	Mar 2028	Mar 2025	Mar 2027	Mar 2029	Dec 2047	Dec 2049	Dec 2039	Dec 2045


^{*}Gas includes the gas tolling contract in the FlexPower Bundle.

Portfolio 5 (Renewables) – Annual Generation Mix (TWh)

					Existing F	leet Retire	ment Dates			
	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
P5	Renew- ables	Mar 2025	Mar 2028	Mar 2025	Mar 2027	Mar 2029	Dec 2047	Dec 2049	Dec 2039	Dec 2045

Annual Net Energy Contribution

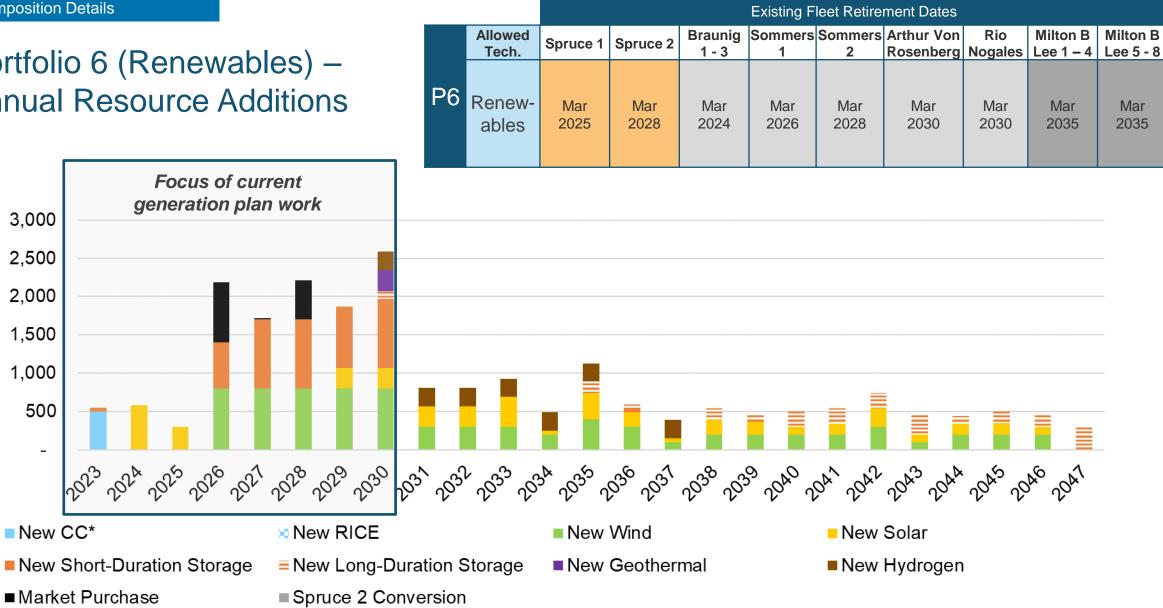
CRA^{Charles} River Associates

2,500

2,000

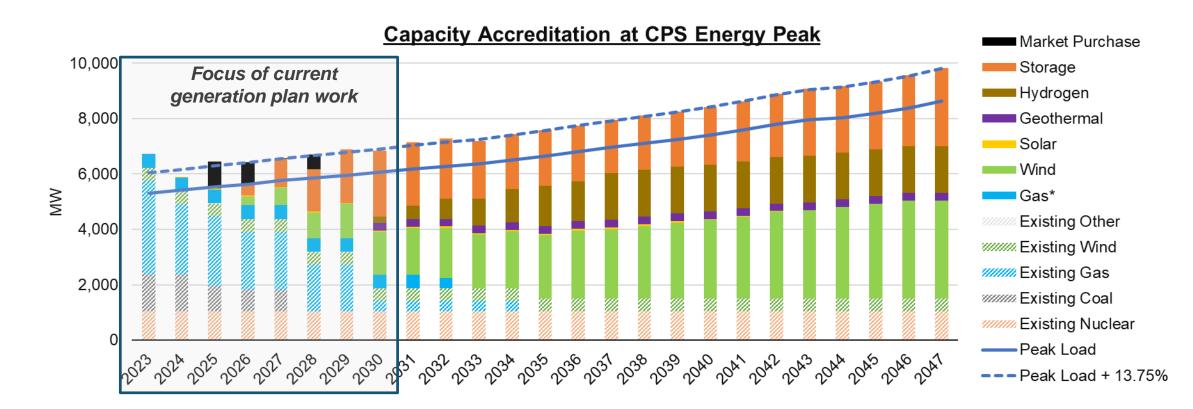
1,500

1,000


500

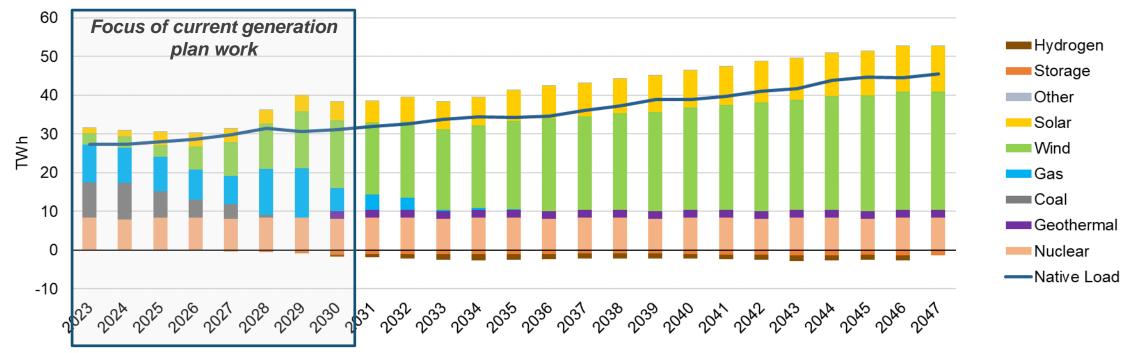
-

New CC*


MΜ

Portfolio 6 (Renewables) -**Annual Resource Additions**

blio Composition Details					Existing F	leet Retire	ment Dates			
Dortfolio C (Donourobloo)	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
Portfolio 6 (Renewables) – Annual Supply Demand Balance	P6 Renew- ables	Mar 2025	Mar 2028	Mar 2024	Mar 2026	Mar 2028	Mar 2030	Mar 2030	Mar 2035	Mar 2035



^{*}Gas includes the gas tolling contract in the FlexPower Bundle.

Portfolio 6 (Renewables) – Annual Generation Mix (TWh)

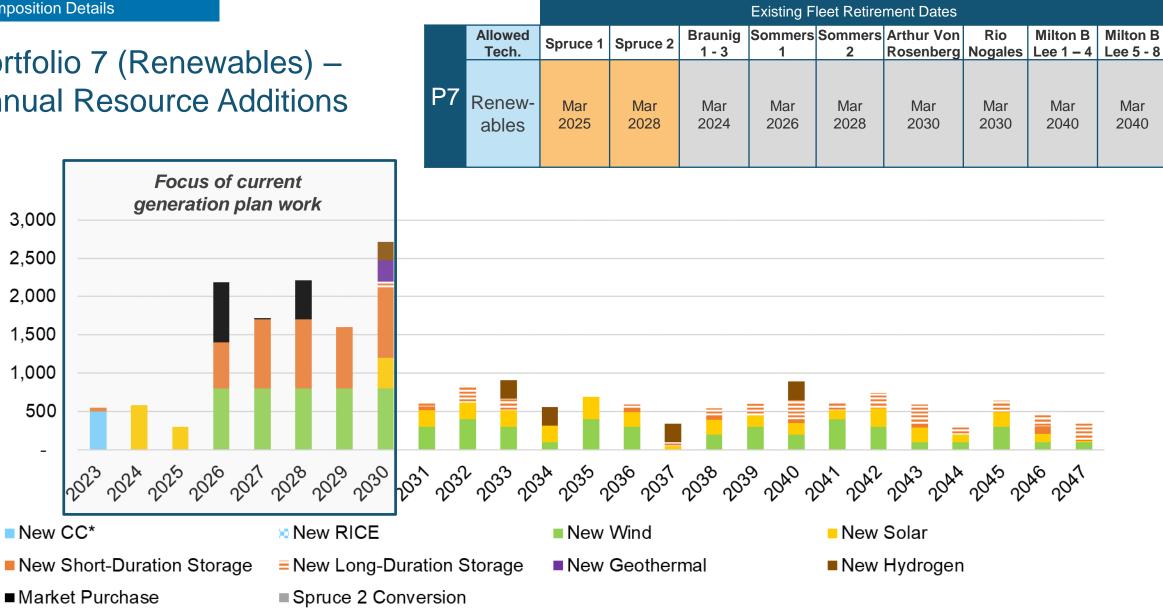
					Existing F	leet Retire	ment Dates			
	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
P6	Renew- ables	Mar 2025	Mar 2028	Mar 2024	Mar 2026	Mar 2028	Mar 2030	Mar 2030	Mar 2035	Mar 2035

2,500

2,000

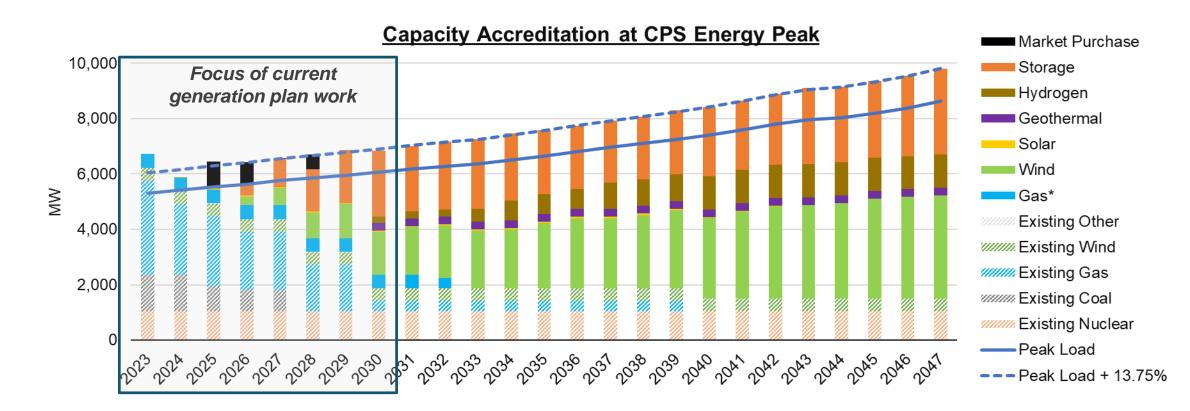
1,500

1,000


500

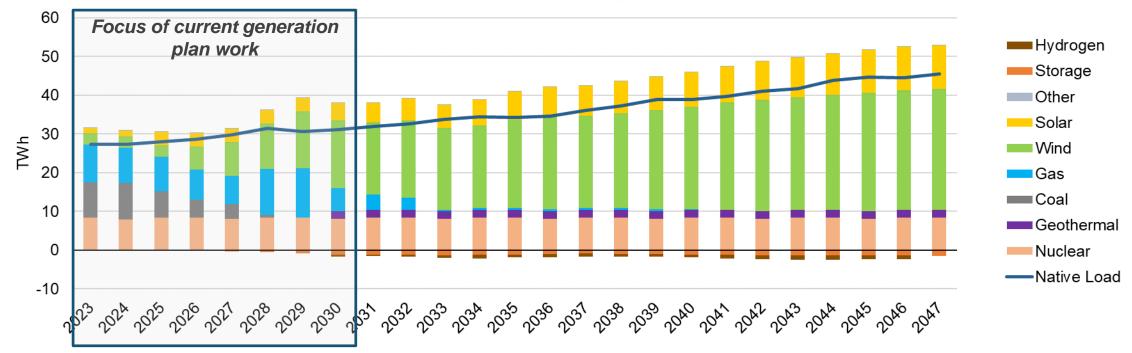
-

New CC*


MΜ

Portfolio 7 (Renewables) -**Annual Resource Additions**

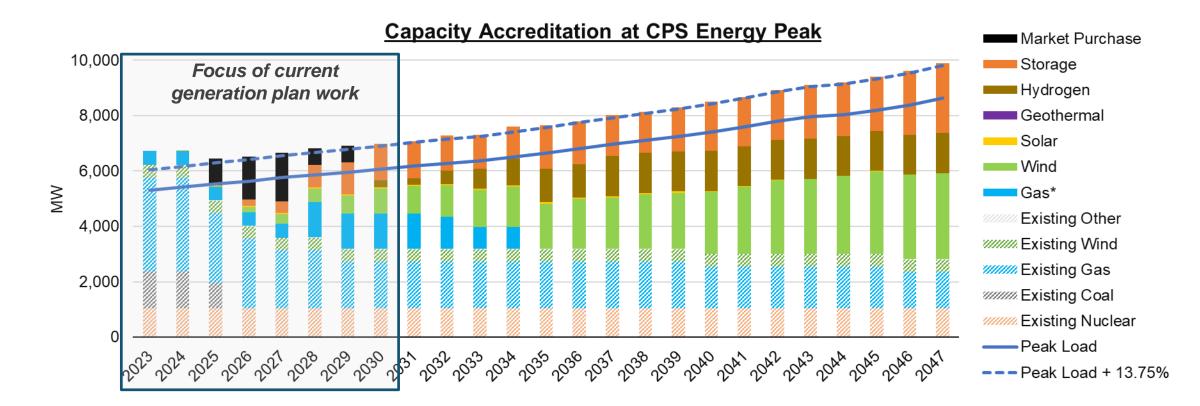
lio Composition Details					Existing F	leet Retire	ment Dates			
Dartfalia 7 (Danawahlaa)	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
Portfolio 7 (Renewables) – Annual Supply Demand Balance	P7 Renewables	Mar 2025	Mar 2028	Mar 2024	Mar 2026	Mar 2028	Mar 2030	Mar 2030	Mar 2040	Mar 2040



*Gas includes the gas tolling contract in the FlexPower Bundle.

Portfolio 7 (Renewables) – Annual Generation Mix (TWh)

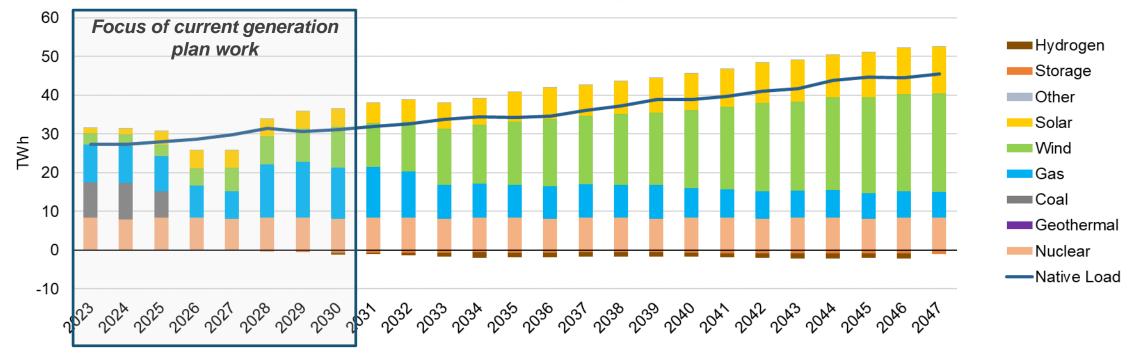
					Existing F	leet Retire	ment Dates			
	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
P7	Renew- ables	Mar 2025	Mar 2028	Mar 2024	Mar 2026	Mar 2028	Mar 2030	Mar 2030	Mar 2040	Mar 2040


≩ 1,500

Portfolio 8 Annual Res

omposition Details						Existing F	leet Retire	ment Dates			
		Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
ortfolio 8 (Renewał nnual Resource Ac	· ·	Renew- ables	Mar 2025	Convert to gas in Dec 2025 and retire in Mar 2035	Mar 2025	Mar 2027	Mar 2029	Dec 2047	Dec 2049	Dec 2039	Dec 2045
3,000 Focus of ca											
2,500											
2,000											
§ 1,500											
1,000											
500											
2023 2024 2025 2026 20	2 ¹ 202° 202° 203° 203° 203° 203° 203° 203°	⁶ 69 69	20 ⁵⁵ 1	696 90 ³¹	20 ⁰⁰ 20 ⁰	² 20 ⁴⁰ 26	94° 2042	2043 2044	2045 25	A ⁶ 2041	
New CC*	New RICE		New	Wind			New	Solar			
New Short-Duration Storage	e ≡New Long-Duration	Storage	New	Geotherr	mal		■ New	Hydrogen	l		
■Market Purchase	Spruce 2 Conversio	n									

ortfolio Composition Details			Existing Fleet Retirement Dates								
Dartfalia 9 (Danau	(ablaa)	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
Portfolio 8 (Renew	ables) –			Convert to							
Annual Supply De	mand Balance P8	8 Renew-	Mar	gas in Dec 2025	Mar	Mar	Mar	Dec	Dec	Dec	Dec
		ables	2025	and retire in Mar	2025	2027	2029	2047	2049	2039	2045
				2035							


*Gas includes the gas tolling contract in the FlexPower Bundle and Spruce 2 coal-to-gas conversion.

Po

Portfolio 8 (Renewables) – Annual Generation Mix (TWh)

					Existing F	leet Retire	ment Dates			
	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
P8	Renew- ables		Convert to gas in Dec 2025 and retire in Mar 2035	Mar 2025	Mar 2027	Mar 2029	Dec 2047	Dec 2049	Dec 2039	Dec 2045

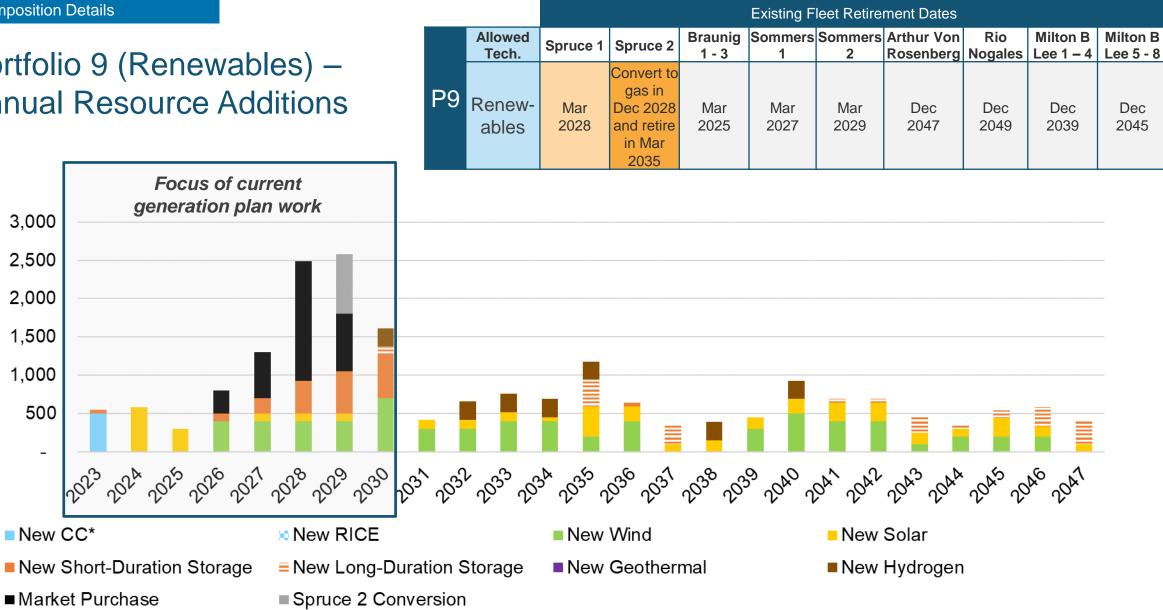
2,500

2,000

1,500

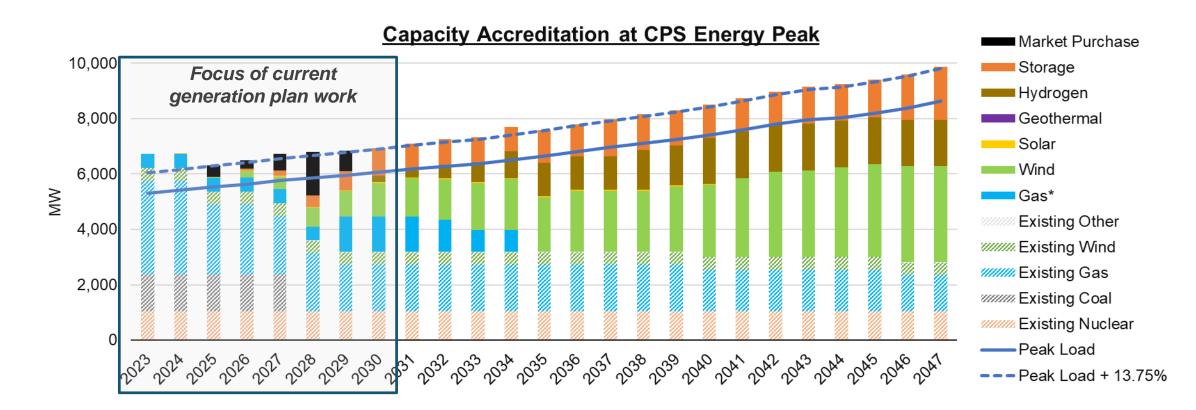
1,000

500


-

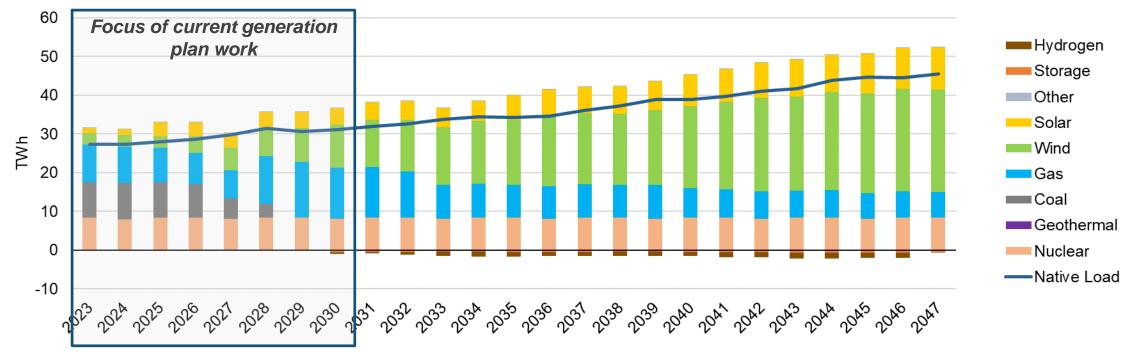
New CC*

2023


MΜ

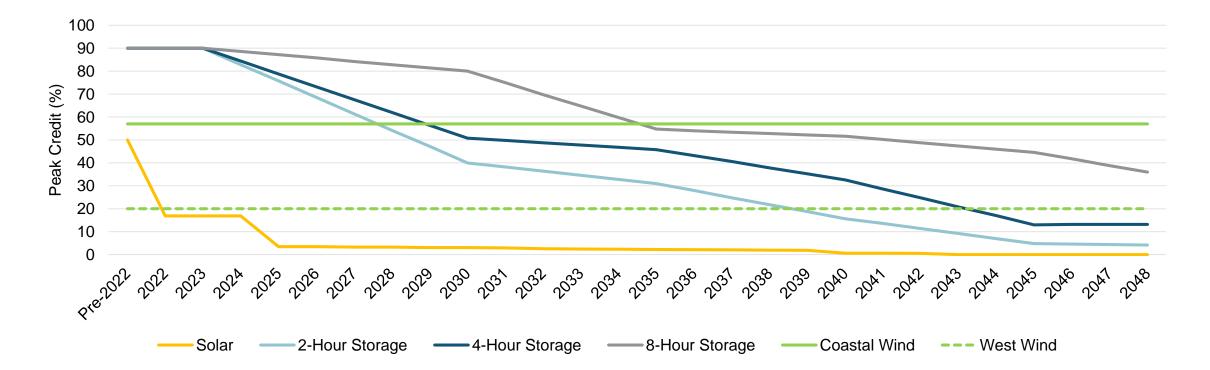
Portfolio 9 (Renewables) -**Annual Resource Additions**

olio Composition Details					Existing F	leet Retire	ment Dates			
Doutfalia (Danawahlaa)	Allowe Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
Portfolio 9 (Renewables) – Annual Supply Demand Balance	P9 Renew ables	- Mar 2028	Convert to gas in Dec 2028 and retire in Mar 2035	Mar 2025	Mar 2027	Mar 2029	Dec 2047	Dec 2049	Dec 2039	Dec 2045



*Gas includes the gas tolling contract in the FlexPower Bundle and Spruce 2 coal-to-gas conversion.

Portfolio 9 (Renewables) – Annual Generation Mix (TWh)


					Existing F	leet Retire	ment Dates			
	Allowed Tech.	Spruce 1	Spruce 2	Braunig 1 - 3	Sommers 1		Arthur Von Rosenberg		Milton B Lee 1 – 4	Milton B Lee 5 - 8
P9	Renew- ables		Convert to gas in Dec 2028 and retire in Mar 2035	Mar 2025	Mar 2027	Mar 2029	Dec 2047	Dec 2049	Dec 2039	Dec 2045

Reserve Margin Assumptions

Parameter	Assumption
Reserve Margin on CPS Energy Native Load Peak	13.75 – 15.00%
Market Purchase Limit	4% of annual native load
Market Sale Limit	20% of annual native load

Technology Availability and Build Limits

	Block First		Annual Build Limit (MW) 2026 - 2030				l Build Limi 2031 - 2040	× /	Annual Build Limit (MW) 2041 +			
Technology	Size (MW)	Available Year	P1 (Gas)	P2/P4 (Blend)	P3/P5- P9 (RES)	P1 (Gas)	P2/P4 (Blend)	P3/P5- P9 (RES)	P1 (Gas)	P2/P4 (Blend)	P3/P5- P9 (RES)	
H-Class Combined Cycle 2x1	880	2027	88	80		88	30		88	30		
Reciprocating Internal Combustion Engines (11 Units)	202	2027	4(04		4(04		4()4		
Coastal Wind	100	2026		300	400		4(00		50	00	
West Wind	100	2026		300	400		4(00		50	00	
Solar	100	2026		300	400		400	500		50	00	
2-Hour Lithium Ion Batt.	50	2026		30	00		30	00		40	00	
4-Hour Lithium Ion Batt.	50	2026		150	300		30	00		40	00	
8-Hour Lithium Ion Batt.	50	2027		100	300		200	300		300	400	
20-Hour Flow Battery	50	2030		1(00		200	500		300	500	
Enhanced Geothermal	30	2030		30	00		30	00		60	00	
Hydrogen	240	2030		24	240		24	40		24	40	
Nuclear – Small Modular	600	2030		600 600 600			600					

Specifying Build Limits

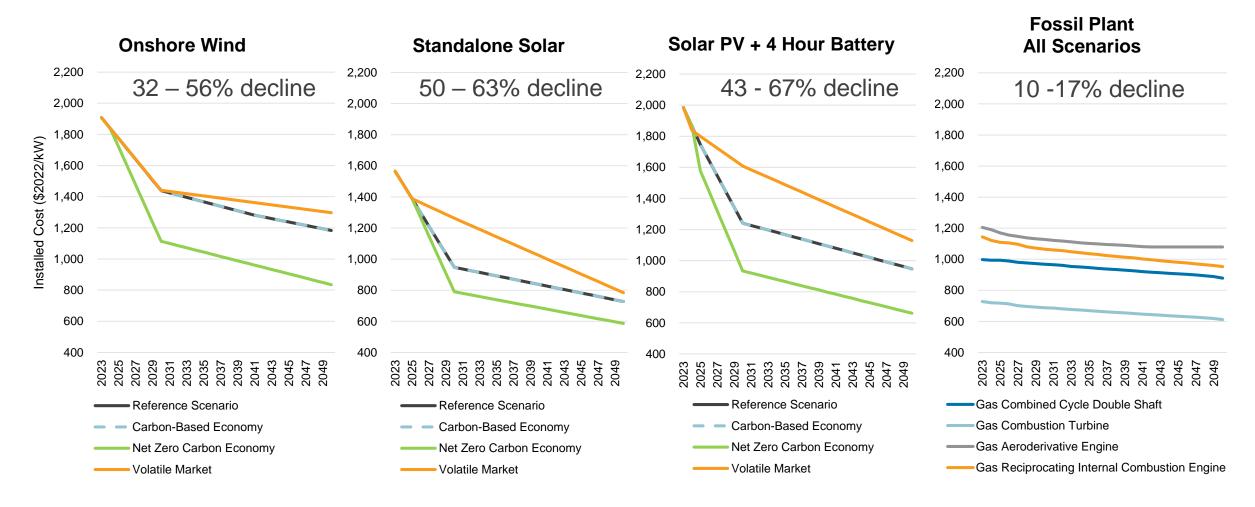
Historical and expected renewable resource additions across ERCOT are significant, but growth may be constrained by supply chain limitations, interconnection requirements, and permitting and construction time

		Solar			Wind			Battery		
	Year	ERCOT Cumulative Installed (MW)	ERCOT Growth (MW)	CPS Energy Share of Growth* (MW)	ERCOT Cumulative Installed (MW)	ERCOT Growth (MW)	CPS Energy Share of Growth* (MW)	ERCOT Cumulative Installed (MW)	ERCOT Growth (MW)	CPS Energy Share of Growth* (MW)
Actual through Aug-22 Projections from Sep- 22 onwards	2020	3,974	1,692	100	25,121	2,083	123	225	10	1
	2021	8,274	4,300	253	28,417	1,261	74	833	122	7
	2022	14,983	6,710	395	38,052	3,296	194	3,468	608	36
	2023	30,717	15,734	926	40,913	9,635	567	8,322	2,634	155
	2024	39,498	8,781	517	41,916	2,861	168	8,877	4,855	286
	Range			100 - 926			74 - 567			1 - 286

Source: ERCOT – Resource Capacity Trend Charts

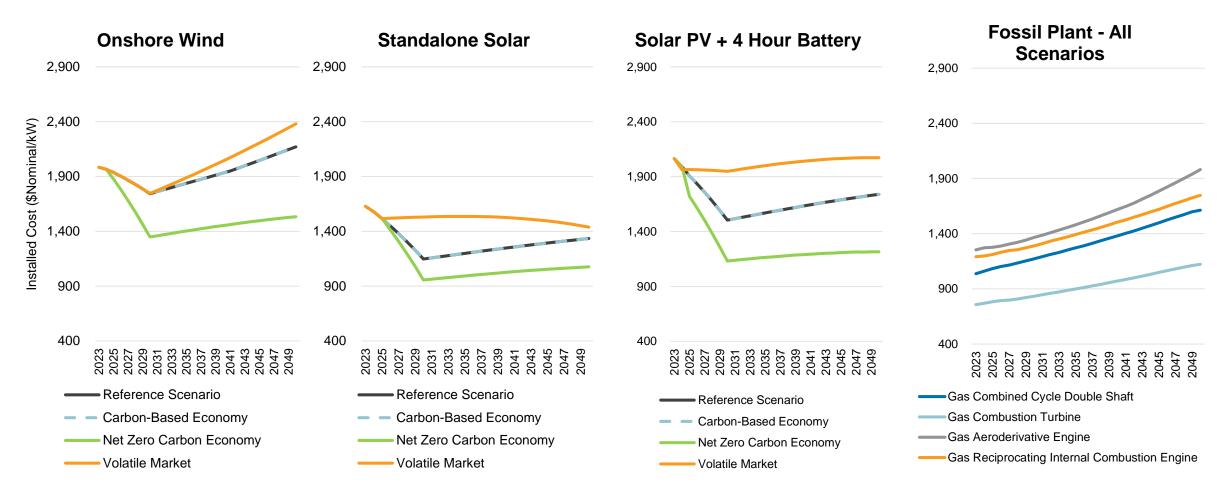
- For wind and solar, capacity additions across ERCOT (adjusted for CPS Energy's share of ERCOT demand) have been around 100 900 MW per year, with a
 large increase expected for 2023 before declining in 2024. CPS Energy annual build "limits" have been specified based on these ERCOT-wide observations,
 with slightly lower near-term limits to account for transmission constraints and supply chain issues.
- Capacity additions for storage are expected to increase over the next few years, and CPS Energy annual build "limits" assume that 300 MW per year could be
 acquired for various duration types. Build limits for longer-duration storage are limited in the short-term, but grow over time to reflect expectations of technology
 and supply chain advancement.

*CPS Energy share of energy demand in ERCOT is projected to be around 5.9% over this decade. 5.9% was applied to the total ERCOT-wide growth figure to derive the CPS Energy share of growth.



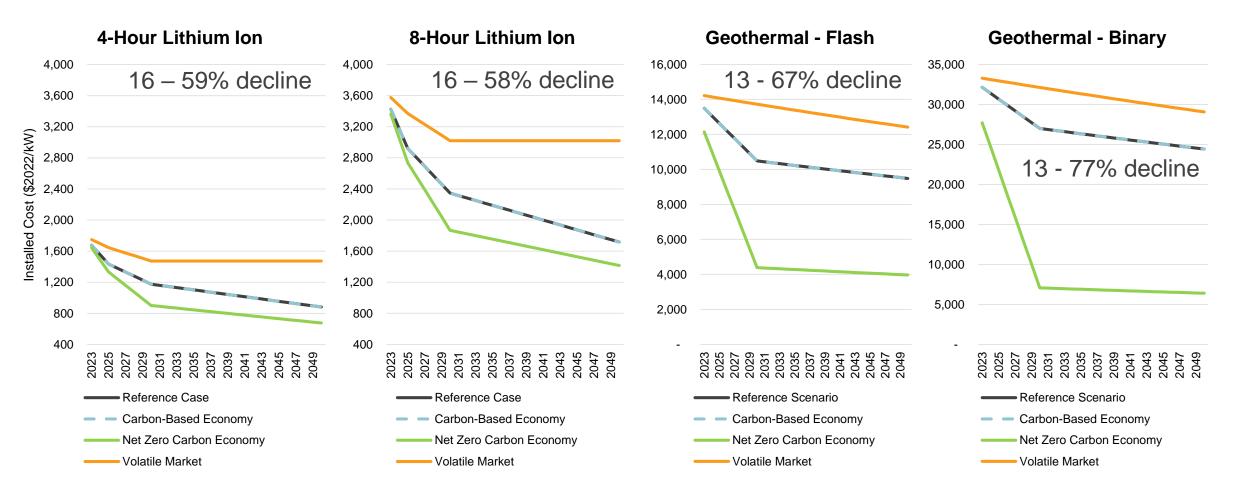
Appendix: Installed Cost & Levelized Cost of Electricity

Installed Technology Cost Scenarios (\$2022) - Renewable & Fossil

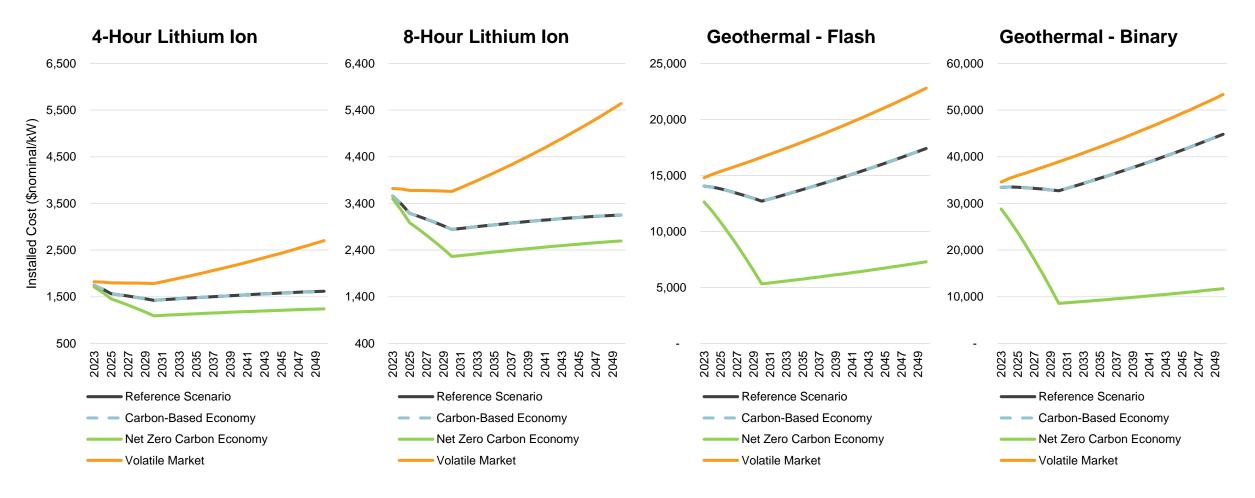

Technology cost assumptions were developed based on well-established third-party sources

CRA^{Charles} River Associates

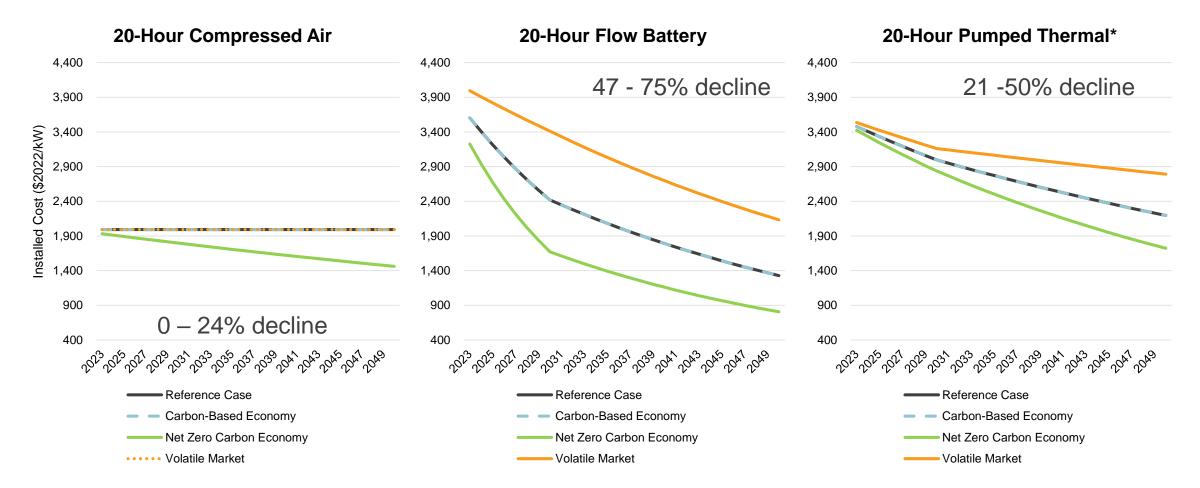
Installed Technology Cost Scenarios (\$Nominal) – Renewable & Fossil


Technology cost assumptions were developed based on well-established third-party sources

CRA^{Charles} River Associates


Installed Technology Cost Scenarios (\$2022) – Lithium Ion and Geothermal

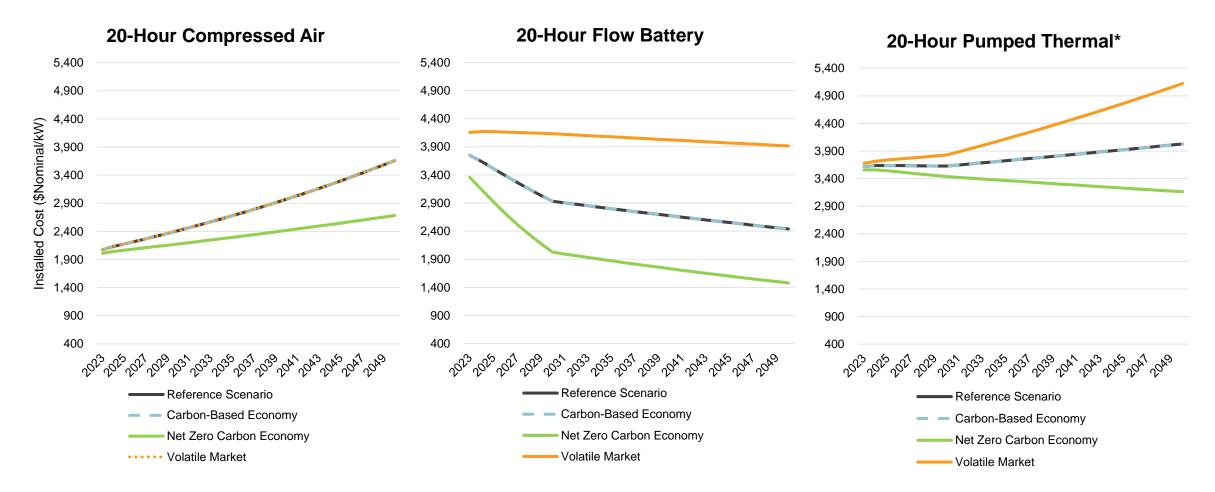
Technology cost assumptions were developed based on authoritative third-party sources


Installed Technology Cost Scenarios (\$Nominal) – Lithium Ion and Geothermal

Technology cost assumptions were developed based on authoritative third-party sources

Installed Technology Cost Scenarios (\$2022) – Long Duration Storage

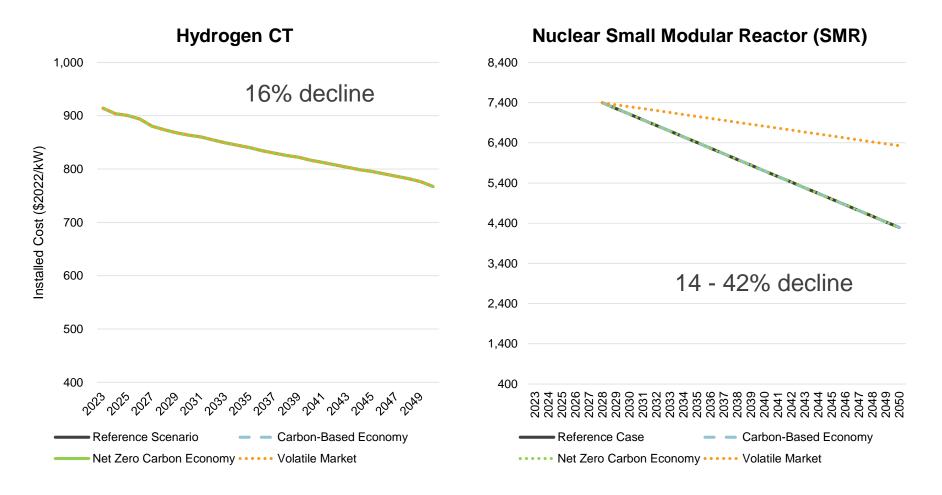
Technology cost assumptions were developed based on authoritative third-party sources



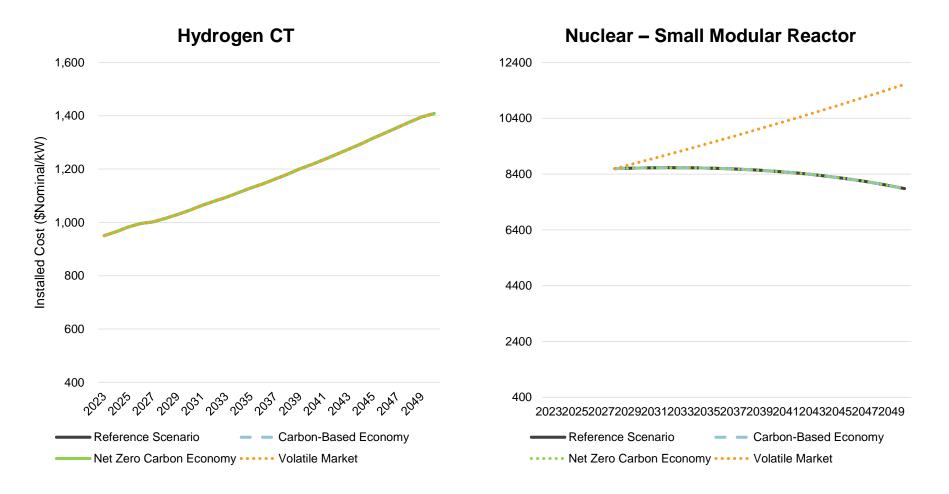
Note: *Pumped thermal uses electricity to drive a heat pump to store electricity as heat. When electricity is required, the heat is turned back into electricity using a heat engine.

Installed Technology Cost Scenarios (\$Nominal) – Long Duration Storage

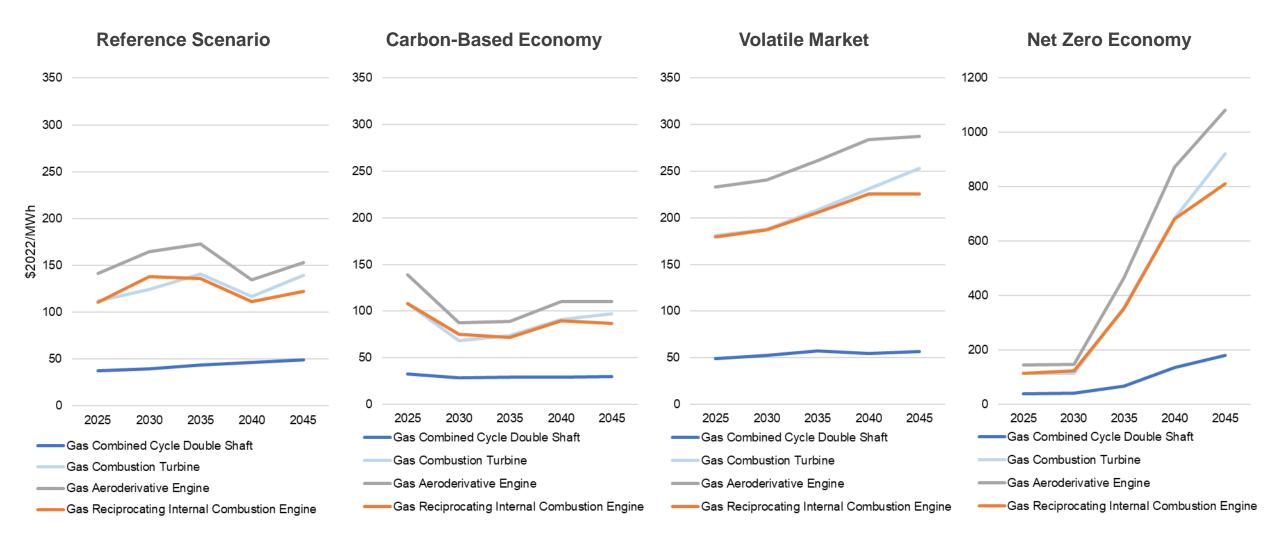
Technology cost assumptions were developed based on authoritative third-party sources



Note: *Pumped thermal uses electricity to drive a heat pump to store electricity as heat. When electricity is required, the heat is turned back into electricity using a heat engine.

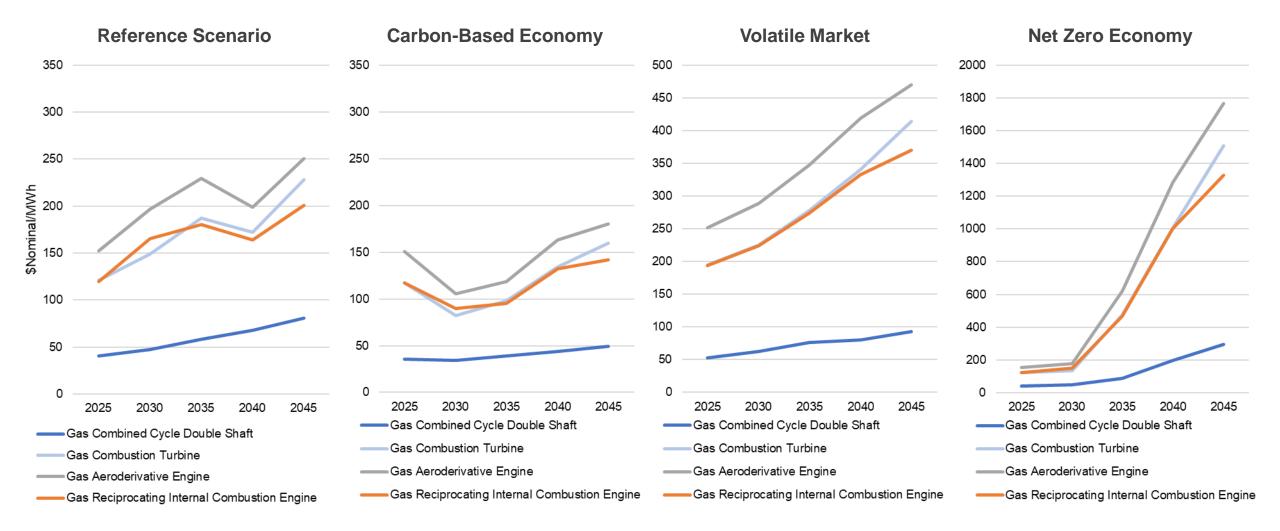

Installed Technology Cost Scenarios (\$2022) – Hydrogen & SMR

Technology cost assumptions were developed based on authoritative third-party sources

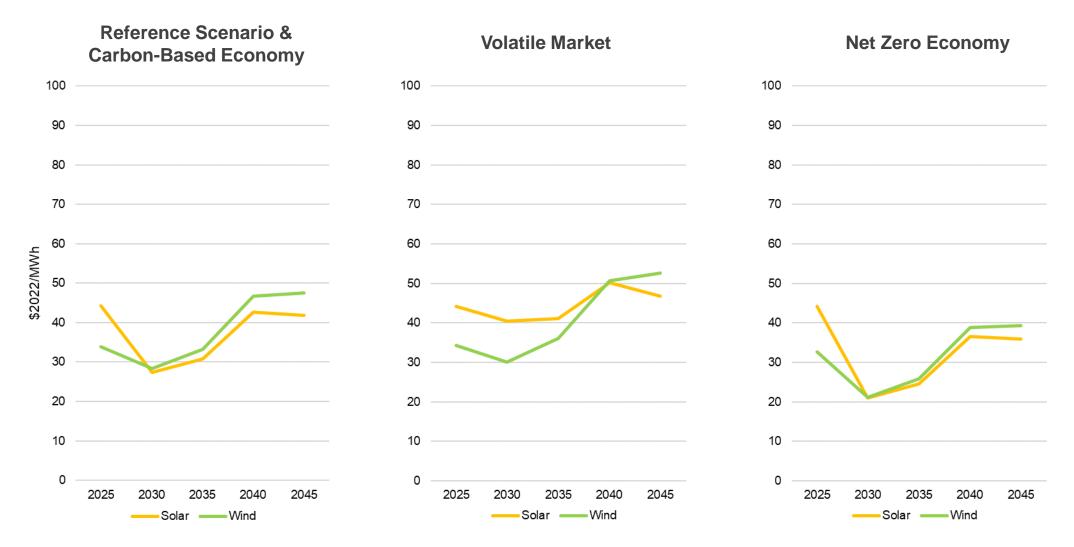


Installed Technology Cost Scenarios (\$Nominal) – Hydrogen & SMR

Technology cost assumptions were developed based on authoritative third-party sources

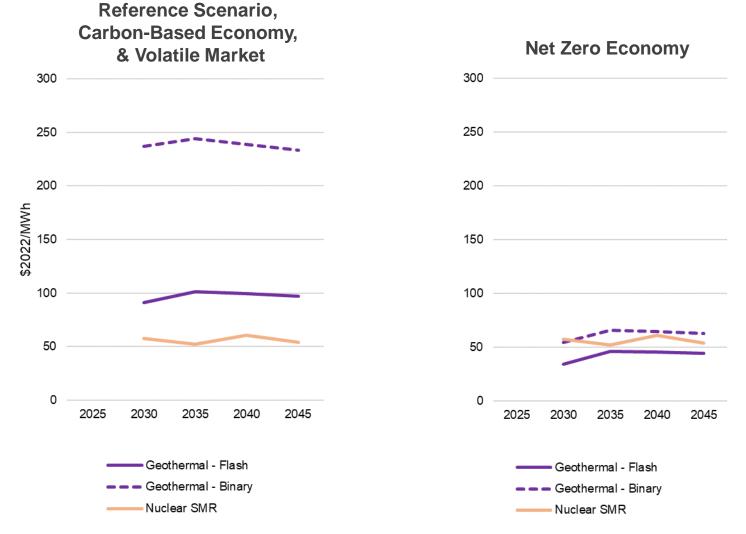

Levelized Cost of Electricity (\$2022) – Natural Gas Resources

Note: Expected capacity factors vary by technology and scenario and are based on ERCOT market scenario analysis results.


Levelized Cost of Electricity (\$Nominal) – Natural Gas Resources

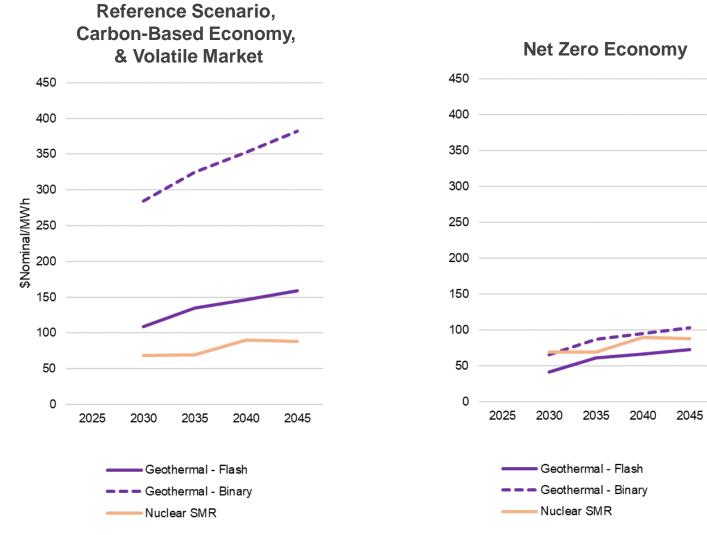
Note: Expected capacity factors vary by technology and scenario and are based on ERCOT market scenario analysis results.

Levelized Cost of Electricity (\$2022) - Wind & Solar

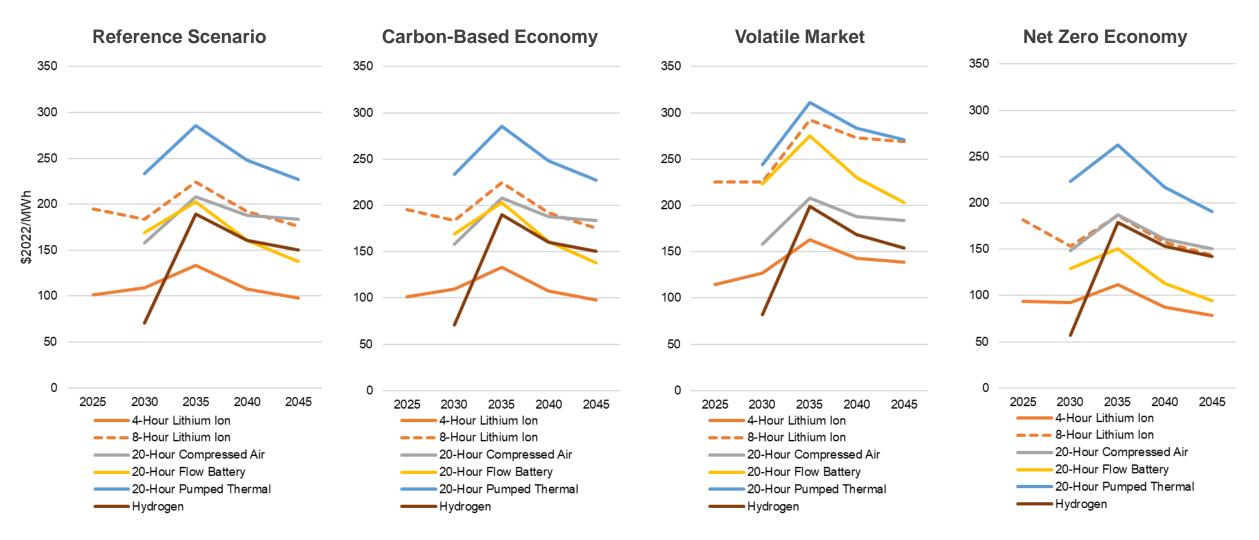

Notes: 1) Costs are inclusive of the impact of Production Tax Credits under the Inflation Reduction Act. 2) Costs include expected congestion between likely project sites and CPS Energy load.

Levelized Cost of Electricity (\$Nominal) – Wind & Solar

Notes: 1) Costs are inclusive of the impact of Production Tax Credits under the Inflation Reduction Act. 2) Costs include expected congestion between likely project sites and CPS Energy load.

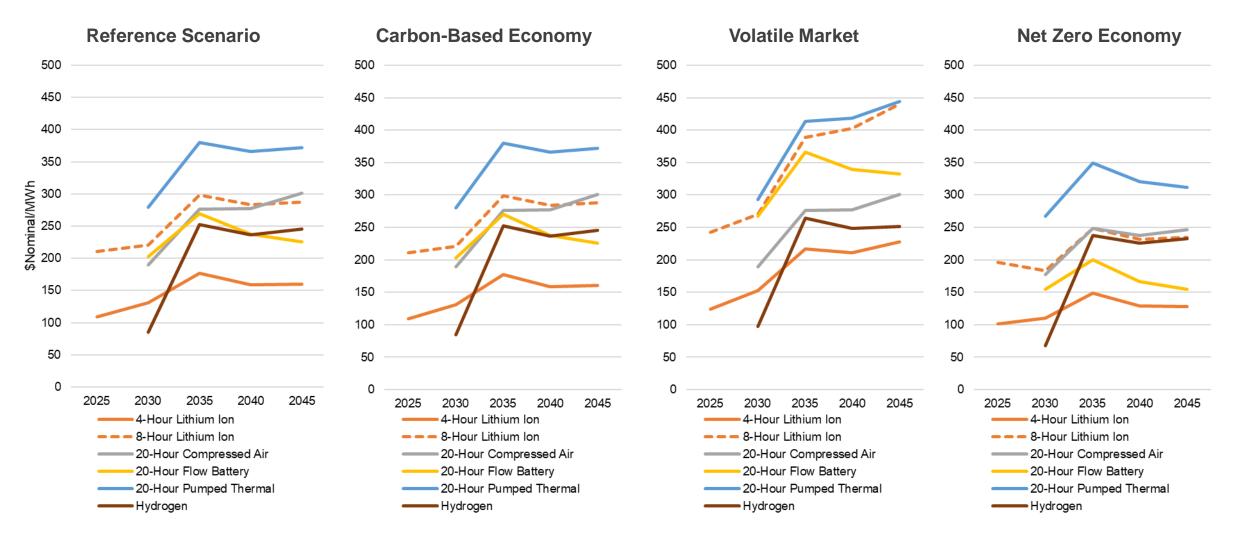

Levelized Cost of Electricity (\$2022) – Geothermal & Nuclear

Notes: 1) Nuclear SMR costs are inclusive of the impact of Investment Tax Credits under the Inflation Reduction Act. 2) Geothermal costs are inclusive of the impact of Production Tax Credits under the Inflation Reduction Act.


Levelized Cost of Electricity (\$Nominal) – Geothermal & Nuclear

Notes: 1) Nuclear SMR costs are inclusive of the impact of Investment Tax Credits under the Inflation Reduction Act. 2) Geothermal costs are inclusive of the impact of Production Tax Credits under the Inflation Reduction Act.

Levelized Cost of Electricity (\$2022) – Storage Resources

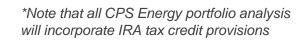


Note: All technologies are assumed to have the same effective capacity factor associated with charging and discharging, although capacity factors vary by year and scenario. All storage technology costs, except Hydrogen, are inclusive of the impact of the Investment Tax Credits under the Inflation Reduction Act. Hydrogen costs are inclusive of the impact of the hydrogen Production Tax Credit.

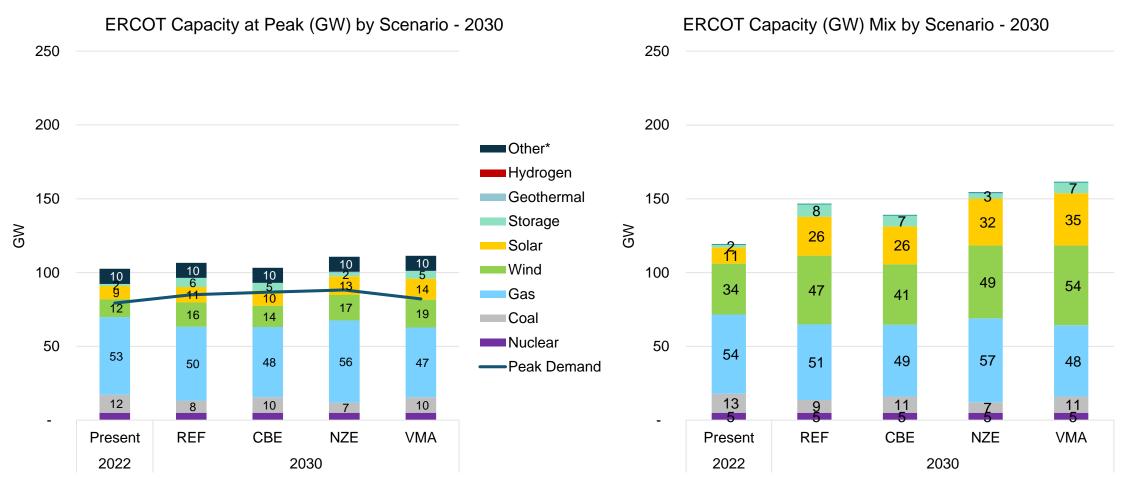
85

Levelized Cost of Electricity (\$Nominal) – Storage Resources

Note: All technologies are assumed to have the same effective capacity factor associated with charging and discharging, although capacity factors vary by year and scenario. All storage technology costs, except Hydrogen, are inclusive of the impact of the Investment Tax Credits under the Inflation Reduction Act. Hydrogen costs are inclusive of the impact of the hydrogen Production Tax Credit.


Appendix: ERCOT Scenario Recap

Key ERCOT Scenario Input Variables

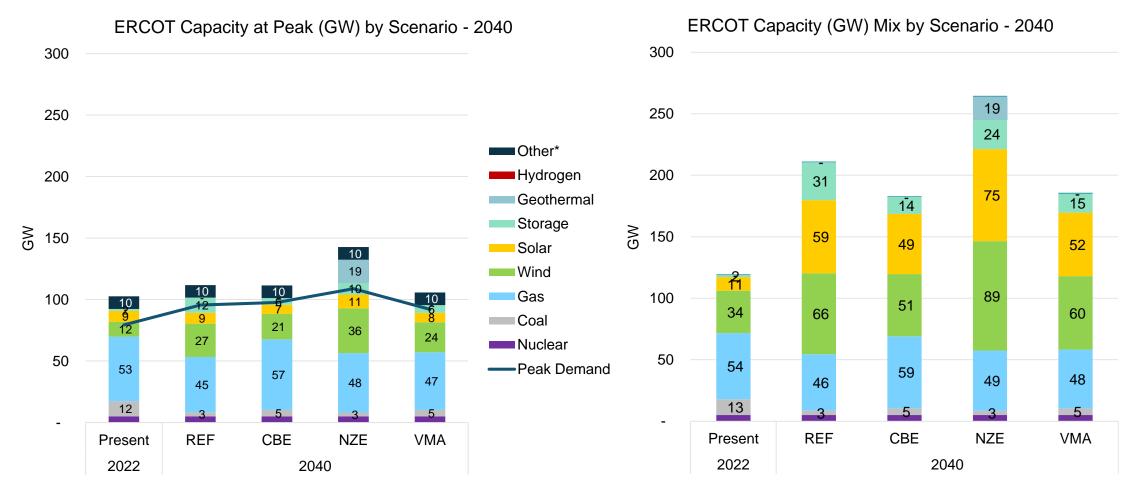

Each scenario comprises a combination of five input variables whose levels vary across the scenarios as shown below

ERCOT Scenario		Natural Gas Prices	CO2 Carbon Policies	Technology Costs	Demand Growth	ERCOT Market Design Change
	Reference Scenario (REF)	Baseline	Baseline carbon price	Baseline	Baseline	Confirmed changes only
Ca	rbon-Based Economy (CBE)	Low due to production increases	No carbon price	Baseline	High demand driven by low fuel and carbon prices	Confirmed changes only
CARBON NEUTRAL	Net Zero Carbon Economy (NZE)	Low due to electrification drive	High carbon price	Fast decline + Inflation Reduction Act Tax Credits*	High demand driven by electrification	Capacity market launched & seasonal reserve margins
2°	Volatile Market (VMA)	High	No carbon price to alleviate inflation pressure	Slow decline + Inflation Reduction Act Tax Credits*	Low demand due to high natural gas prices	Confirmed changes only

2030 ERCOT Market Capacity (GW) Mix

The model simulation optimizes a least-cost regional capacity expansion plan under each scenario's input drivers.

Note:


1. There is limited hydro, hydrogen, and geothermal capacity.

2. *Other includes contributions from EE/DR, imports, switchable capacity, capacity from available mothballed plants, and private network capacity. The estimates are included by ERCOT in its Capacity, Demand and Reserves report and have been incorporated for reserve margin modeling purposes.

CRACharles River Associates

2040 ERCOT Market Capacity (GW) Mix

The model simulation optimizes a least-cost regional capacity expansion plan under each scenario's input drivers.

Notes:

- 1. There is limited hydro and hydrogen generation.
- 2. Geothermal is the low-cost resource option from a long-term capacity expansion perspective in NZE but could be representative of other "baseload" zero-emitting technologies.

*Other includes contributions from EE/DR, imports, switchable capacity, capacity from available mothballed plants, and private network capacity. The estimates are included by ERCOT in its Capacity, Demand and Reserves report and have been incorporated for reserve margin modeling purposes.

